TGMB_2024v14n6

Tree Genetics and Molecular Breeding 2024, Vol.14, No.6, 286-294 http://genbreedpublisher.com/index.php/tgmb 294 Wang Y., Shahid M., Lin S., Chen C., and Hu C., 2017, Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event, BMC Genomics, 18: 354. https://doi.org/10.1186/s12864-017-3738-y PMid:28477616 PMCid:PMC5420408 Xu Y., Li Z., and Thomson M., 2012, Molecular breeding in plants: moving into the mainstream, Molecular Breeding, 29: 831-832. https://doi.org/10.1007/s11032-012-9717-8 Yuan Y., Chung C., and Chan T., 2020, Advances in optical mapping for genomic research, Computational and Structural Biotechnology Journal, 18: 2051-2062. https://doi.org/10.1016/j.csbj.2020.07.018 PMid:32802277 PMCid:PMC7419273 Zhang J., An H., Zhang X., Xu F., and Zhou B., 2022, Transcriptomic analysis reveals potential gene regulatory networks under cold stress of loquat (Eriobotrya japonica Lindl.), Frontiers in Plant Science, 13: 944269. https://doi.org/10.3389/fpls.2022.944269 PMid:35937353 PMCid:PMC9354853 Zhang Q., Liu J., Liu W., Liu N., Zhang Y., Xu M., Liu S., Ma X., and Zhang Y., 2022, Construction of a high-density genetic map and identification of quantitative trait loci linked to fruit quality traits in apricots using specific-locus amplified fragment sequencing, Frontiers in Plant Science, 13: 798700. https://doi.org/10.3389/fpls.2022.798700 PMid:35237282 PMCid:PMC8882730 Zhao X.Y., 2024, Study of post-harvest preservation techniques for loquat and its application in reducing post-harvest losses, Bioscience Methods, 15(5): 207-215. https://doi.org/10.5376/bm.2024.15.0021

RkJQdWJsaXNoZXIy MjQ4ODYzMg==