Tree Genetics and Molecular Breeding 2024, Vol.14, No.6, 269-276 http://genbreedpublisher.com/index.php/tgmb 275 Arora L., and Narula A., 2017, Gene editing and crop improvement using CRISPR-Cas9 system, Frontiers in Plant Science, 8: 1932. https://doi.org/10.3389/fpls.2017.01932 PMid:29167680 PMCid:PMC5682324 Chao H., Zhang S., Hu Y., Ni Q., Xin S., Zhao L., Ivanisenko V., Orlov Y., and Chen M., 2023, Integrating omics databases for enhanced crop breeding, Journal of Integrative Bioinformatics, 20(4): 20230012. https://doi.org/10.1515/jib-2023-0012 PMid:37486120 PMCid:PMC10777369 De Mori G., Zaina G., Franco-Orozco B., Testolin R., De Paoli E., and Cipriani G., 2020, Targeted mutagenesis of the female-suppressor SyGI gene in tetraploid kiwifruit by CRISPR/CAS9, Plants, 10(1): 62. https://doi.org/10.3390/plants10010062 PMid:33396671 PMCid:PMC7823651 Fizikova A., Tikhonova N., Ukhatova Y., Ivanov R., and Khlestkina E., 2021, Applications of CRISPR/Cas9 system in vegetatively propagated fruit and berry crops, Agronomy, 11(9): 1849. https://doi.org/10.3390/agronomy11091849 Herath D., Voogd C., Mayo-Smith M., Yang B., Allan A., Putterill J., and Varkonyi-Gasic E., 2022, CRISPR‐Cas9‐mediated mutagenesis of kiwifruit BFTgenes results in an evergrowing but not early flowering phenotype, Plant Biotechnology Journal, 20(11): 2064-2076. https://doi.org/10.1111/pbi.13888 PMid:35796629 PMCid:PMC9616528 Ho J., Zhao M., Wojcik S., Taiaroa G., Butler M., and Poulter R., 2020, The application of the CRISPR-Cas9 system in Pseudomonas syringae pv. actinidiae, Journal of Medical Microbiology, 69(3): 478-486. https://doi.org/10.1099/jmm.0.001124 PMid:31935181 Huang B.F., 2024, A Comprehensive analysis of genomic advances and CRISPR/Cas9 applications in kiwifruit (Actinidia chinensis Planch.), International Journal of Horticulture, 14(5): 319-332. https://doi.org/10.5376/ijh.2024.14.0033 Kaur N., Awasthi P., and Tiwari S., 2020, Fruit crops improvement using CRISPR/Cas9 system, In: Singh V., and Dhar P.K. (eds.), Genome engineering via CRISPR-Cas9 system, Academic Press, New York, USA, pp.131-145. https://doi.org/10.1016/b978-0-12-818140-9.00012-x PMCid:PMC7994460 Keul A., Farkas A., Carpa R., Dobrotă C., and Iordache D., 2022, Development of smart fruit crops by genome editing, Turkish Journal of Agriculture and Forestry, 46(2): 129-140. https://doi.org/10.55730/1300-011x.2965 Lee M., Kim H., Rhee H., Kwack Y., Prathibhani C.K.H.M., and Kim J., 2020, Evaluation of the genetic resources of kiwifruit with multivariate analysis, Korean Journal of Horticultural Science and Technology, 38(4): 569-581. https://doi.org/10.7235/HORT.20200053 Liao G., Li Z., Huang C., Zhong M., Tao J., Qu X., Chen L., and Xu X., 2019, Genetic diversity of inner quality and SSR association analysis of wild kiwifruit (Actinidia eriantha), Scientia Horticulturae, 248: 241-247. https://doi.org/10.1016/j.scienta.2019.01.021 Liao G., Liu Q., Xu X., He Y., Li Y., Wang H., Ye B., Huang C., Zhong M., and Jia D., 2021a, Metabolome and transcriptome reveal novel formation mechanism of early mature trait in kiwifruit (Actinidia eriantha), Frontiers in Plant Science, 12: 760496. https://doi.org/10.3389/fpls.2021.760496 PMid:34868156 PMCid:PMC8640357 Liao G., Zhong M., Jiang Z., Tao J., Jia D., Qu X., Huang C., Liu Q., and Xu X., 2021b, Genome-wide association studies provide insights into the genetic determination of flower and leaf traits of Actinidia eriantha, Frontiers in Plant Science, 12: 730890. https://doi.org/10.3389/fpls.2021.730890 PMid:34490026 PMCid:PMC8417775 Liu B., Song W., Wang L., Wu Y., Xu X., Niu X., Huang S., Liu Y., and Tang W., 2023, dCas9-BE3 and dCas12a-BE3 systems mediated base editing in kiwifruit canker causal agent Pseudomonas syringae pv. actinidiae, International Journal of Molecular Sciences, 24(5): 4597. https://doi.org/10.3390/ijms24054597 PMid:36902028 PMCid:PMC10003707 Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S., Ma W., and She M., 2021, Application of CRISPR/Cas9 in crop quality improvement, International Journal of Molecular Sciences, 22(8): 4206. https://doi.org/10.3390/ijms22084206 PMid:33921600 PMCid:PMC8073294 Mahmood U., Li X., Fan Y., Chang W., Niu Y., Li J., Qu C., and Lu K., 2022, Multi-omics revolution to promote plant breeding efficiency, Frontiers in Plant Science, 13: 1062952. https://doi.org/10.3389/fpls.2022.1062952 PMid:36570904 PMCid:PMC9773847
RkJQdWJsaXNoZXIy MjQ4ODYzMg==