Tree Genetics and Molecular Breeding 2024, Vol.14, No.5, 247-255 http://genbreedpublisher.com/index.php/tgmb 254 Reference Aguilar D., Rodríguez-Jasso R., Zanuso E., Rodríguez D., Amaya-Delgado L., Sánchez A., and Ruiz H., 2018, Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse, Bioresource Technology, 263: 112-119. https://doi.org/10.1016/j.biortech.2018.04.100 Bautista-Montes E., Hernández-Soriano L., and Simpson J., 2022, Advances in the micropropagation and genetic transformation of Agave species, Plants, 11(13): 1757. https://doi.org/10.3390/plants11131757 PMid:35807709 PMCid:PMC9269549 Broda M., Yelle D., and Serwańska K., 2022, Bioethanol production from lignocellulosic biomass-challenges and solutions, Molecules, 27(24): 8717. https://doi.org/10.3390/molecules27248717 PMid:36557852 PMCid:PMC9785513 Bušić A., Marđetko N., Kundas S., Morzak G., Belskaya H., Šantek M., Komes D., Novak S., and Šantek B., 2018, Bioethanol production from renewable raw materials and its separation and purification: a review, Food Technology and Biotechnology, 56: 289-311. https://doi.org/10.17113/ftb.56.03.18.5546 Carrillo-Nieves D., Alanis M., Quiroz R., Ruiz H., Iqbal H., and Parra-Saldívar R., 2019, Current status and future trends of bioethanol production from agro-industrial wastes in Mexico, Renewable and Sustainable Energy Reviews, 102: 63-74. https://doi.org/10.1016/j.rser.2018.11.031 Chilakamarry C., Sakinah A., Zularisam A., Pandey A., and Vo D., 2021, Technological perspectives for utilisation of waste glycerol for the production of biofuels: a review, Environmental Technology and Innovation, 24: 101902. https://doi.org/10.1016/j.eti.2021.101902 Corbin K., Byrt C., Bauer S., DeBolt S., Chambers D., Holtum J., Karem G., Henderson M., Lahnstein J., Beahan C., Bacic A., Fincher G., Betts N., and Burton R., 2015, Prospecting for energy-rich renewable raw materials: Agave leaf case study, PLoS One, 10(8): e0135382. https://doi.org/10.1371/journal.pone.0135382 PMid:26305101 PMCid:PMC4549257 Das N., Jena P., Padhi D., Mohanty M., and Sahoo G., 2021, A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production, Biomass Conversion and Biorefinery, 13: 1503-1527. https://doi.org/10.1007/s13399-021-01294-3 Davis S., Abatzoglou J., and LeBauer D., 2021, Expanded potential growing region and yield increase for Agave americana with future climate, Agronomy, 11(11): 2109. https://doi.org/10.3390/agronomy11112109 Davis S., Dohleman F., and Long S., 2011, The global potential for Agave as a biofuel feedstock, GCB Bioenergy, 3(1): 68-78. Flores-Gómez C., Silva E., Zhong C., Dale B., Sousa L., and Balan V., 2018, Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery, Biotechnology for Biofuels, 11: 7. https://doi.org/10.1186/s13068-017-0995-6 PMid:29371883 PMCid:PMC5769373 Hong W.Y., and Huang W.Z., 2024, Application of sugarcane in ethanol fuel production: theoretical basis and commercial potential, Journal of Energy Bioscience, 15(2): 60-71. https://doi.org/10.5376/jeb.2024.15.0007 Jones A., Zhou Y., Held M., and Davis S., 2020, Tissue composition of Agave americana L. yields greater carbohydrates from enzymatic hydrolysis than advanced bioenergy crops, Frontiers in Plant Science, 11: 654. https://doi.org/10.3389/fpls.2020.00654 PMid:32595656 PMCid:PMC7300260 Karimi S., Karri R., Yaraki M., and Koduru J., 2021, Processes and separation technologies for the production of fuel-grade bioethanol: a review, Environmental Chemistry Letters, 19: 2873-2890. https://doi.org/10.1007/s10311-021-01208-9 Kumar A., and Ram C., 2021, Agave biomass: a potential resource for production of value-added products, Environmental Sustainability, 4: 245-259. https://doi.org/10.1007/s42398-021-00172-y Kumar S., Kumar N., and Chintagunta A., 2020, Bioethanol production from cereal crops and lignocelluloses rich agro-residues: prospects and challenges, SN Applied Sciences, 2: 1673. https://doi.org/10.1007/s42452-020-03471-x Kumar T., and Shahi S., 2023, A renewable biofuel-bioethanol: a review, Journal of Advanced Zoology, 44(S3): 1698-1706. https://doi.org/10.17762/jaz.v44is3.2388 Láinez M., Ruiz H., Arellano-Plaza M., and Martínez-Hernández S., 2019, Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus, Renewable Energy, 138: 1127-1133. https://doi.org/10.1016/j.renene.2019.02.058 Malik K., Salama E., El-Dalatony M., Jalalah M., Harraz F., Al‐Assiri M., Zheng Y., Sharma P., and Li X., 2021, Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: long-term investigation, Industrial Crops and Products, 159: 113122. https://doi.org/10.1016/j.indcrop.2020.113122
RkJQdWJsaXNoZXIy MjQ4ODYzMg==