Tree Genetics and Molecular Breeding 2024, Vol.14, No.5, 218-228 http://genbreedpublisher.com/index.php/tgmb 227 Galibina N., Moshchenskaya Y., Tarelkina T., Nikerova K., Korzhenevskii M., Serkova A., Afoshin N., Semenova L., Ivanova D., Guljaeva E., and Chirva O., 2023, Identification and expression profile of CLE41/44-PXY-WOX genes in adult trees Pinus sylvestris L. trunk tissues during cambial activity, Plants, 12(4): 835. https://doi.org/10.3390/plants12040835 PMid:36840180 PMCid:PMC9961183 Groover A., and Robischon M., 2006, Developmental mechanisms regulating secondary growth in woody plants, Current Opinion in Plant Biology, 9(1): 55-58. https://doi.org/10.1016/j.pbi.2005.11.013 PMid:16337827 Haas A., Shi D., and Greb T., 2022, Cell fate decisions within the vascular cambium-initiating wood and bast formation, Frontiers in Plant Science, 13: 864422. https://doi.org/10.3389/fpls.2022.864422 PMid:35548289 PMCid:PMC9082745 Hoang N., Choe G., Zheng Y., Fandino A., Sung I., Hur J., Kamran M., Park C., Kim H., Ahn H., Kim S., Fei Z., and Lee J., 2020, Identification of conserved gene-regulatory networks that integrate environmental sensing and growth in the root cambium, Current Biology, 30(15): 2887-2900. https://doi.org/10.1016/j.cub.2020.05.046 PMid:32531282 Hu J., Hu X., Yang Y., He C., Hu J., and Wang X., 2021, Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1, Plant Physiology, 188: 255-267. https://doi.org/10.1093/plphys/kiab487 PMid:34687296 PMCid:PMC8774819 Kucukoglu M., Nilsson J., Zheng B., Chaabouni S., and Nilsson O., 2017, WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees, The New Phytologist, 215(2): 642-657. https://doi.org/10.1111/nph.14631 PMid:28609015 Oles V., Panchenko A., and Smertenko A., 2017, Modeling hormonal control of cambium proliferation, PLoS ONE, 12(2): e0171927. https://doi.org/10.1371/journal.pone.0171927 PMid:28187161 PMCid:PMC5302410 Riefler M., Brügmann T., Fladung M., and Schmülling T., 2022, A constitutively active cytokinin receptor variant increases cambial activity and stem growth in poplar, International Journal of Molecular Sciences, 23(15): 8321. https://doi.org/10.3390/ijms23158321 PMid:35955458 PMCid:PMC9369088 Savidge R., 2001, Intrinsic regulation of cambial growth, Journal of Plant Growth Regulation, 20: 52-77. https://doi.org/10.1007/s003440010002 Serkova A., Tarelkina T., Galibina N., Nikerova K., Moshchenskaya Y., Sofronova I., Nikolaeva N., Ivanova D., Semenova L., and Novitskaya L., 2022, Changes in the differentiation program of birch cambial derivatives following trunk girdling, Forests, 13(8): 1171. https://doi.org/10.3390/f13081171 Shen D., Holmer R., Kulikova O., Mannapperuma C., Street N., Yan Z., Maden T., Bu F., Zhang Y., Geurts R., and Magne K., 2021, The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii, The Plant Journal, 106: 1366-1386. https://doi.org/10.1111/tpj.15242 PMid:33735477 PMCid:PMC9543857 Tang X., Wang D., Liu Y., Lu M., Zhuang Y., Xie Z., Wang C., Wang S., Kong Y., Chai G., and Zhou G., 2019, Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus, The New Phytologist, 225(4): 1545-1561. https://doi.org/10.1111/nph.16244 PMid:31596964 Turley E., and Etchells J., 2021, Laying it on thick: a study in secondary growth, Journal of Experimental Botany, 73: 665-679. https://doi.org/10.1093/jxb/erab455 PMid:34655214 PMCid:PMC8793872 Ursache R., Nieminen K., and Helariutta Y., 2013, Genetic and hormonal regulation of cambial development, Physiologia Plantarum, 147(1): 36-45. https://doi.org/10.1111/j.1399-3054.2012.01627.x PMid:22551327 Wang C., Liu N., Geng Z., Ji M., Wang S., Zhuang Y., Wang D., He G., Zhao S., Zhou G., and Chai G., 2022a, Integrated transcriptome and proteome analysis reveals brassinosteroid-mediated regulation of cambium initiation and patterning in woody stem, Horticulture Research, 9: uhab048. https://doi.org/10.1093/hr/uhab048 PMid:35031795 PMCid:PMC8788366 Wang H., 2020, Regulation of vascular cambium activity, Plant Science, 291: 110322. https://doi.org/10.1016/j.plantsci.2019.110322 PMid:31928672
RkJQdWJsaXNoZXIy MjQ4ODYzMg==