Tree Genetics and Molecular Breeding 2024, Vol.14, No.5, 218-228 http://genbreedpublisher.com/index.php/tgmb 226 Acknowledgments We appreciate the two anonymous peer reviewers who reviewed the manuscript of this study and helped us to express our findings more clearly. Funding This research was supported by the Opening Project of State Key Laboratory of Tree Genetics and Breeding of China (K2018205). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. Reference Agustí J., Lichtenberger R., Schwarz M., Nehlin L., and Greb T., 2011, Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth, PLoS Genetics, 7(2): e1001312. https://doi.org/10.1371/journal.pgen.1001312 PMid:21379334 PMCid:PMC3040665 Begum S., Nakaba S., Yamagishi Y., Oribe Y., and Funada R., 2013, Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees, Physiologia Plantarum, 147(1): 46-54. https://doi.org/10.1111/j.1399-3054.2012.01663.x PMid:22680337 Ben-Targem M., Ripper D., Bayer M., and Ragni L., 2021, Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis, Journal of Experimental Botany, 72(10): 3647-3660. https://doi.org/10.1093/jxb/erab089 PMid:33619529 Bhalerao R., and Fischer U., 2017, Environmental and hormonal control of cambial stem cell dynamics, Journal of Experimental Botany, 68(1): 79-87. https://doi.org/10.1093/jxb/erw466 PMid:27965368 Chen B., Xu H., Guo Y., Grünhofer P., Schreiber L., Lin J., and Li R., 2021, Transcriptomic and epigenomic remodeling occurs during vascular cambium periodicity in Populus tomentosa, Horticulture Research, 8: 102. https://doi.org/10.1038/s41438-021-00535-w PMid:33931595 PMCid:PMC8087784 Chiatante D., Rost T., Bryant J., and Scippa G., 2018, Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium, Annals of Botany, 122(5): 697-710. https://doi.org/10.1093/aob/mcy003 PMid:29394314 PMCid:PMC6215048 Downes G., Drew D., Battaglia M., and Schulze D., 2009, Measuring and modelling stem growth and wood formation: an overview, Dendrochronologia, 27: 147-157. https://doi.org/10.1016/j.dendro.2009.06.006 Elo A., Immanen J., Nieminen K., and Helariutta Y., 2009, Stem cell function during plant vascular development, Seminars in Cell & Developmental Biology, 20(9): 1097-1106. https://doi.org/10.1016/j.semcdb.2009.09.009 PMid:19770063 Etchells J., Mishra L., Kumar M., Campbell L., and Turner S., 2015, Wood formation in trees is increased by manipulating PXY-Regulated cell division, Current Biology, 25: 1050-1055. https://doi.org/10.1016/j.cub.2015.02.023 PMid:25866390 PMCid:PMC4406943 Fischer U., Kucukoglu M., Helariutta Y., and Bhalerao R., 2019, The dynamics of cambial stem cell activity, Annual Review of Plant Biology, 70: 293-319. https://doi.org/10.1146/annurev-arplant-050718-100402 PMid:30822110 Furuya T., Saito M., Uchimura H., Satake A., Nosaki S., Miyakawa T., Shimadzu S., Yamori W., Tanokura M., Fukuda H., and Kondo Y., 2021, Gene co-expression network analysis identifies BEH3 as a stabilizer of secondary vascular development in Arabidopsis, The Plant Cell, 33(8): 2618-2636. https://doi.org/10.1093/plcell/koab151 PMid:34059919 PMCid:PMC8408481
RkJQdWJsaXNoZXIy MjQ4ODYzMg==