Tree Genetics and Molecular Breeding 2024, Vol.14, No.3, 144-154 http://genbreedpublisher.com/index.php/tgmb 154 Tran M., Doan D., Kim J., Song Y., Sung Y., Das S., Kim E., Son G., Kim S., Vu T., and Kim J., 2020, CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato, Plant Cell Reports, 40: 999-1011. https://doi.org/10.1007/s00299-020-02622-z PMid:33074435 Wang T., Xun H., Wang W., Ding X., Tian H., Hussain S., Dong Q., Li Y., Cheng Y., Wang C., Lin R., Li G., Qian X., Pang J., Feng X., Dong Y., Liu B., and Wang S., 2021, Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean, Frontiers in Plant Science, 12: 779598. https://doi.org/10.3389/fpls.2021.779598 PMid:34899806 PMCid:PMC8660858 Wang Z., He Z., Xu X., Shi X., Ji X., and Wang Y., 2021, Revealing salt tolerance mechanism of Tamarix hispida by large scale identification of genes conferring salt tolerance, Tree Physiology, 41(11): 2153-2170. https://doi.org/10.1093/treephys/tpab072 PMid:34014315 Yoon S., Bae E., Lee H., Choi Y., Han M., Choi H., Kang K., and Park E., 2018, Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus alba ×P. glandulosa), Trees, 32: 823-833. https://doi.org/10.1007/s00468-018-1675-2 Yu X., Pan Y., Dong Y., Lu B., Zhang C., Yang M., and Zuo L., 2021, Cloning and overexpression of PeWRKY31 fromPopulus ×euramericana enhances salt and biological tolerance in transgenic Nicotiana, BMC Plant Biology, 21: 80. https://doi.org/10.1186/s12870-021-02856-3 PMid:33549055 PMCid:PMC7866765 Zafar S., Zaidi S., Gaba Y., Singla-Pareek S., Dhankher O., Li X., Mansoor S., and Pareek A., 2020, Engineering abiotic stress tolerance via CRISPR-Cas mediated genome editing, Journal of Experimental Botany, 71(2): 470-479. https://doi.org/10.1093/jxb/erz476 PMid:31644801 Zhang X., Cheng Z., Yao W., Gao Y., Fan G., Guo Q., Zhou B., and Jiang T., 2022, Overexpression of PagERF072 from poplar improves salt tolerance, International Journal of Molecular Sciences, 23(18): 10707. https://doi.org/10.3390/ijms231810707 PMid:36142609 PMCid:PMC9502824 Zhang X., Cheng Z., Zhao K., Yao W., Sun X., Jiang T., and Zhou B., 2019a, Functional characterization of poplar NAC13 gene in salt tolerance, Plant Science, 281: 1-8. https://doi.org/10.1016/j.plantsci.2019.01.003 PMid:30824042 Zhang X., Liu L., Chen B., Qin Z., Xiao Y., Zhang Y., Yao R., Liu H., and Yang H., 2019b, Progress in understanding the physiological and molecular responses of Populus to salt stress, International Journal of Molecular Sciences, 20(6): 1312. https://doi.org/10.3390/ijms20061312 PMid:30875897 PMCid:PMC6471404 Zhao K., Cheng Z., Guo Q., Yao W., Liu H., Zhou B., and Jiang T., 2020, Characterization of the poplar R2R3-MYB gene family and over-expression of PsnMYB108 confers salt tolerance in transgenic tobacco, Frontiers in Plant Science, 11: 571881. https://doi.org/10.3389/fpls.2020.571881 PMid:33178243 PMCid:PMC7596293 Zhao K., Zhang D., Lv K., Zhang X., Cheng Z., Li R., Zhou B., and Jiang T., 2019, Functional characterization of poplar WRKY75 in salt and osmotic tolerance, Plant Science, 289: 110259. https://doi.org/10.1016/j.plantsci.2019.110259 PMid:31623781 Zhou X., Dong Y., Zhang Q., Xiao D., Yang M., and Wang J., 2020, Expression of multiple exogenous insect resistance and salt tolerance genes in Populus nigra L., Frontiers in Plant Science, 11: 1123. https://doi.org/10.3389/fpls.2020.01123 PMid:32793270 PMCid:PMC7393212
RkJQdWJsaXNoZXIy MjQ4ODYzMg==