TGMB_2024v14n3

Tree Genetics and Molecular Breeding 2024, Vol.14, No.3, 144-154 http://genbreedpublisher.com/index.php/tgmb 153 Chen N., Tong S., Tang H., Zhang Z., Liu B., Lou S., Liu J., Liu H., Ma T., and Jiang Y., 2020, The PalERF109 transcription factor positively regulates salt tolerance via PalHKT1;2 in Populus alba var. pyramidalis, Tree Physiology, 40(6): 717-730. https://doi.org/10.1093/treephys/tpaa018 PMid:32083670 Dai W., Wang M., Gong X., and Liu J., 2018, The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs, The New Phytologist, 219(3): 972-989. https://doi.org/10.1111/nph.15240 PMid:29851105 Ezawa S., and Tada Y., 2009, Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorhiza using Agrobacteriumfunctional screening, Plant Science, 176(2): 272-278. https://doi.org/10.1016/j.plantsci.2008.11.005 Farhat S., Jain N., Singh N., Sreevathsa R., Dash P., Rai R., Yadav S., Kumar P., Sarkar A., Jain A., Singh N., and Rai V., 2019, CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice, Seminars in Cell & Developmental Biology, 96: 91-99. https://doi.org/10.1016/j.semcdb.2019.05.003 Gao H., Yu C., Liu R., Li X., Huang H., Wang X., Zhang C., Jiang N., Li X., Cheng S., Zhang H., and Li B., 2022, The glutathione S-transferase PtGSTF1 improves biomass production and salt tolerance through regulating xylem cell proliferation, ion homeostasis and reactive oxygen species scavenging in poplar, International Journal of Molecular Sciences, 23(19): 11288. https://doi.org/10.3390/ijms231911288 PMid:36232609 PMCid:PMC9569880 Ge X., Zhang L., Du J., Wen S., Qu G., and Hu J., 2022, Transcriptome analysis of Populus euphratica under salt treatment and PeERF1 gene enhances salt tolerance in transgenic Populus alba ×Populus glandulosa, International Journal of Molecular Sciences, 23(7): 3727. https://doi.org/10.3390/ijms23073727 PMid:35409087 PMCid:PMC8998595 Geng L., Zhang W., Zou T., Du Q., Ma X., Cui D., Han B., Zhang Q., and Han L., 2023, Integrating linkage mapping and comparative transcriptome analysis for discovering candidate genes associated with salt tolerance in rice, Frontiers in Plant Science, 14: 1065334. https://doi.org/10.3389/fpls.2023.1065334 PMid:36760644 PMCid:PMC9904508 Geng X., Chen S., Yilan E., Zhang W., Mao H., Qiqige A., Wang Y., Qi Z., and Lin X., 2020, Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar, Tree Genetics & Genomes, 16: 81. https://doi.org/10.1007/s11295-020-01475-7 Guo Q., Jiang J., Yao W., Li L., Zhao K., Cheng Z., Han L., Wei R., Zhou B., and Jiang T., 2021, Genome-wide analysis of poplar HD-Zip family and over-expression of PsnHDZ63 confers salt tolerance in transgenic Populus simonii ×P.nigra, Plant Science, 311: 111021. https://doi.org/10.1016/j.plantsci.2021.111021 PMid:34482922 Guo Q., Lu N., Sun Y., Lv W., Luo Z., Zhang H., Ji Q., Yang Q., Chen S., Zhang W., and Li Y., 2019, Heterologous expression of the DREB transcription factor AhDREBin Populus tomentosa Carrière confers tolerance to salt without growth reduction under greenhouse conditions, Forests, 10(3): 214. https://doi.org/10.3390/f10030214 Han X., Chen Z., Li P., Xu H., Liu K., Zha W., Li S., Chen J., Yang G., Huang J., You A., and Zhou L., 2022, Development of novel rice germplasm for salt-tolerance seedling stage using CRISPR-Cas9, Sustainability, 14(5): 2621. https://doi.org/10.3390/su14052621 Jiang Y., Tong S., Chen N., Liu B., Bai Q., Chen Y., Bi H., Zhang Z., Lou S., Tang H., Liu J., Ma T., and Liu H., 2020, The PalWRKY77 transcription factor negatively regulates salt tolerance and ABA signaling in Populus, The Plant Journal, 105(5): 1258-1273. Kerek E., Cromwell C., and Hubbard B., 2021, Identification of drug resistance genes using a pooled lentiviral CRISPR/Cas9 screening approach, Methods in Molecular Biology, 2381: 227-242. https://doi.org/10.1007/978-1-0716-1740-3_13 Nazir R., Mandal S., Mitra S., Ghorai M., Das N., Jha N., Majumder M., Pandey D., and Dey A., 2022, CRISPR/Cas genome-editing toolkit to enhance salt stress tolerance in rice and wheat, Physiologia Plantarum, 174(2): e13642. https://doi.org/10.1111/ppl.13642 PMid:35099818 Sun Z., Li H., Zhang Y., Li Z., Ke H., Wu L., Zhang G., Wang X., and Ma Z., 2018, Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutumL.), Frontiers in Plant Science, 9: 1011. https://doi.org/10.3389/fpls.2018.01011 PMid:30050555 PMCid:PMC6050395 Tada Y., Kawano R., Komatsubara S., Nishimura H., Katsuhara M., Ozaki S., Terashima S., Yano K., Endo C., Sato M., Okamoto M., Sawada Y., Hirai M., and Kurusu T., 2019, Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein, Plant Science, 278: 54-63. https://doi.org/10.1016/j.plantsci.2018.10.019 PMid:30471729

RkJQdWJsaXNoZXIy MjQ4ODYzMg==