Tree Genetics and Molecular Breeding 2024, Vol.14, No.3, 132-143 http://genbreedpublisher.com/index.php/tgmb 143 Wisser R., Sun Q., Hulbert S., Kresovich S., and Nelson R., 2005, Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance, Genetics, 169: 2277-2293. https://doi.org/10.1534/genetics.104.036327 PMid:15716503 PMCid:PMC1449593 Xie H., Zhang J., Cheng J., Zhao S., Wen Q., Kong P., Zhao Y., Xiang X., and Rong J., 2023, Field plus lab experiments help identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees: a case study of Camellia oleifera, Frontiers in Plant Science, 14: 1113125. https://doi.org/10.3389/fpls.2023.1113125 PMid:36909419 PMCid:PMC9994817 Xie Y., Liu B., Gao K., Zhao Y., Li W., Deng L., Zhou Z., and Liu Q., 2023, Comprehensive analysis and functional verification of the Pinus massoniana NBS-LRR gene family involved in the resistance to Bursaphelenchus xylophilus, International Journal of Molecular Sciences, 24(3): 1812. https://doi.org/10.3390/ijms24031812 PMid:36768136 PMCid:PMC9915305 Ye G., Zhang H., Chen B., Nie S., Liu H., Gao W., Wang H., Gao Y., and Gu L., 2019, De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth, The Plant Journal, 97: 779-794. https://doi.org/10.1111/tpj.14159 PMid:30427081 Yin K., and Qiu J., 2019, Genome editing for plant disease resistance: applications and perspectives, Philosophical Transactions of the Royal Society B, 374: 20180322. https://doi.org/10.1098/rstb.2018.0322 PMid:30967029 PMCid:PMC6367152 Zaidi S., Zaidi S., Mukhtar M., and Mansoor S., 2018, Genome editing: targeting susceptibility genes for plant disease resistance, Trends in Biotechnology, 36(9): 898-906. https://doi.org/10.1016/j.tibtech.2018.04.005 PMid:29752192
RkJQdWJsaXNoZXIy MjQ4ODYzMg==