Tree Genetics and Molecular Breeding 2024, Vol.14, No.3, 106-118 http://genbreedpublisher.com/index.php/tgmb 117 Hug L., Baker B., Anantharaman K., Brown C., Probst A., Castelle C., Butterfield C., Hernsdorf A., Amano Y., Ise K., Suzuki Y., Dudek N., Relman D., Finstad K., Amundson R., Thomas B., and Banfield J., 2016, A new view of the tree of life, Nature Microbiology, 1: 16048. https://doi.org/10.1038/nmicrobiol.2016.48 PMid:27572647 Isabel N., Holliday J., and Aitken S., 2019, Forest genomics: advancing climate adaptation, forest health, productivity, and conservation, Evolutionary Applications, 13: 3-10. https://doi.org/10.1111/eva.12902 PMid:31892941 PMCid:PMC6935596 Jactel H., Gritti E., Drössler L., Forrester D., Mason W., Morin X., Pretzsch H., and Castagneyrol B., 2018, Positive biodiversity- productivity relationships in forests: climate matters, Biology Letters, 14: 20170747. https://doi.org/10.1098/rsbl.2017.0747 PMid:29618520 PMCid:PMC5938561 Kelblerová R., Dvorák J., and Korecký J., 2022, Genetic diversity maximization as a strategy for resilient forest ecosystems: a case study on Norway spruce, Forests, 13(3): 489. https://doi.org/10.3390/f13030489 Kumar K., Cowley M., and Davis R., 2019, Next-generation sequencing and emerging technologies, Seminars in Thrombosis and Hemostasis, 45: 661-673. https://doi.org/10.1055/s-0039-1688446 PMid:31096307 Levy S., and Boone B., 2018, Next-generation sequencing strategies, Cold Spring Harbor Perspectives in Medicine, 9: a025791. https://doi.org/10.1101/cshperspect.a025791 PMid:30323017 PMCid:PMC6601457 Li F., Chen X., Luo H., Meiners S., and Kong C., 2022, Root-secreted (-)-loliolide modulates both belowground defense and aboveground flowering in Arabidopsis and tobacco (Nicotiana benthamiana), Journal of Experimental Botany, 74(3): 964-975. https://doi.org/10.1093/jxb/erac439 PMid:36342376 Lu M., Cao M., Yang J., and Swenson N., 2023, Comparative transcriptomics reveals divergence in pathogen response gene families amongst 20 forest tree species, G3: Genes, Genomes, Genetics, 13(12): jkad233. https://doi.org/10.1093/g3journal/jkad233 PMid:37812763 PMCid:PMC10700026 Ma W., Tang S., Dengzeng Z., Zhang D., Zhang T., and Ma X., 2022, Root exudates contribute to belowground ecosystem hotspots: a review, Frontiers in Microbiology, 13: 937940. https://doi.org/10.3389/fmicb.2022.937940 PMid:36274740 PMCid:PMC9581264 Mahood E., Kruse L., and Moghe G., 2020, Machine learning: a powerful tool for gene function prediction in plants, Applications in Plant Sciences, 8(7): e11376. https://doi.org/10.1002/aps3.11376 PMid:32765975 PMCid:PMC7394712 Meger J., Ulaszewski B., and Burczyk J., 2021, Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L., BMC Genomics, 22: 583. https://doi.org/10.1186/s12864-021-07907-5 PMid:34332553 PMCid:PMC8325806 Mendler K., Chen H., Parks D., Hug L., and Doxey A., 2018, AnnoTree: visualization and exploration of a functionally annotated microbial tree of life, Nucleic Acids Research, 47: 4442-4448. https://doi.org/10.1093/nar/gkz246 PMid:31081040 PMCid:PMC6511854 Müller B., Filho J., Lima B., Garcia C., Missiaggia A., Aguiar A., Takahashi E., Kirst M., Gezan S., Silva-Junior O., Neves L., and Grattapaglia D., 2018, Independent and joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations, The New Phytologist, 221(2): 818-833. https://doi.org/10.1111/nph.15449 PMid:30252143 Musunuru K., Arora P., Cooke J., Ferguson J., Hershberger R., Hickey K., Lee J., Lima J., Loscalzo J., Pereira N., Russell M., Shah S., Sheikh F., Wang T., and Macrae C., 2018, Interdisciplinary models for research and clinical endeavors in genomic medicine: a scientific statement from the American heart association, Circulation: Genomic and Precision Medicine, 11: 6. https://doi.org/10.1161/HCG.0000000000000046 Naidoo S., Slippers B., Plett J., Coles D., and Oates C., 2019, The road to resistance in forest trees, Frontiers in Plant Science, 10: 273. https://doi.org/10.3389/fpls.2019.00273 PMid:31001287 PMCid:PMC6455082
RkJQdWJsaXNoZXIy MjQ4ODYzMg==