TGMB_2024v14n3

Tree Genetics and Molecular Breeding 2024, Vol.14, No.3, 106-118 http://genbreedpublisher.com/index.php/tgmb 116 Cantalapiedra C., Hernández-Plaza A., Letunic I., Bork P., and Huerta-Cepas J., 2021, eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale, Molecular Biology and Evolution, 38: 5825-5829. https://doi.org/10.1093/molbev/msab293 PMid:34597405 PMCid:PMC8662613 Cappa E., Klutsch J., Sebastian-Azcona J., Ratcliffe B., Wei X., Ros L., Liu Y., Chen C., Benowicz A., Sadoway S., Mansfield S., Erbilgin N., Thomas B., and El-Kassaby Y., 2022, Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program, PLoS One, 17(3): e0264549. https://doi.org/10.1371/journal.pone.0264549 PMid:35298481 PMCid:PMC8929621 Carpenter S., and Conlan R., 2021, Clinical functional genomics, Cancers, 13(18): 4627. https://doi.org/10.3390/cancers13184627 PMid:34572854 PMCid:PMC8465855 Cortés A., Restrepo-Montoya M., and Bedoya-Canas L., 2020, Modern strategies to assess and breed forest tree adaptation to changing climate, Frontiers in Plant Science, 11: 583323. https://doi.org/10.3389/fpls.2020.583323 PMid:33193532 PMCid:PMC7609427 Depuydt T., and Vandepoele K., 2021, Multi-omics network-based functional annotation of unknown Arabidopsis genes, The Plant Journal, 108(4): 1193-1212. https://doi.org/10.1111/tpj.15507 PMid:34562334 Dijk E., Jaszczyszyn Y., Naquin D., and Thermes C., 2018, The third revolution in sequencing technology, Trends in Genetics, 34(9): 666-681. https://doi.org/10.1016/j.tig.2018.05.008 Du Q., Lu W., Quan M., Xiao L., Song F., Li P., Zhou D., Xie J., Wang L., and Zhang D., 2018, Genome-wide association studies to improve wood properties: challenges and prospects, Frontiers in Plant Science, 9: 1912. https://doi.org/10.3389/fpls.2018.01912 PMid:30622554 PMCid:PMC6309013 Fattel L., Psaroudakis D., Yanarella C., Chiteri K., Dostalik H., Joshi P., Starr D., Vu H., Wimalanathan K., and Lawrence-Dill C., 2021, Standardized genome-wide function prediction enables comparative functional genomics: a new application area for Gene Ontologies in plants, GigaScience, 11: giac023. https://doi.org/10.1093/gigascience/giac023 PMid:35426911 PMCid:PMC9012101 Gagalova K., Warren R., Coombe L., Wong J., Nip K., Yuen M., Whitehill J., Celedon J., Ritland C., Taylor G., Cheng D., Plettner P., Hammond S., Mohamadi H., Zhao Y., Moore R., Mungall A., Boyle B., Laroche J., Cottrell J., MacKay J., Lamothe M., Gérardi S., Isabel N., Pavy N., Jones S., Bohlmann J., Bousquet J., and Birol I., 2022, Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes, The Plant Journal, 111(5): 1469-1485. https://doi.org/10.1111/tpj.15889 Gao J., Liu Z., Zhao W., Tomlinson K., Xia S., Zeng Q., Wang X., and Chen J., 2020, Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima, Journal of Systematics and Evolution, 59(3): 541-556. https://doi.org/10.1111/jse.12568 Grattapaglia D., 2022, Twelve years into genomic selection in forest trees: climbing the slope of enlightenment of marker assisted tree breeding, Forests, 13(10): 1554. https://doi.org/10.3390/f13101554 Grattapaglia D., Silva-Junior O., Resende R., Cappa E., Müller B., Tan B., Isik F., Ratcliffe B., and El-Kassaby Y., 2018, Quantitative genetics and genomics converge to accelerate forest tree breeding, Frontiers in Plant Science, 9: 1693. https://doi.org/10.3389/fpls.2018.01693 PMid:30524463 PMCid:PMC6262028 Holliday J., Aitken S., Cooke J., Fady B., González‐Martínez S., Heuertz M., Jaramillo‐Correa J., Lexer C., Staton, M., Whetten R., and Plomion C., 2017, Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding, Molecular Ecology, 26(3): 706-717. https://doi.org/10.1111/mec.13963 Hu T., Chitnis N., Monos D., and Dinh A., 2021, Next-generation sequencing technologies: an overview, Human Immunology, 82(11): 801-811. https://doi.org/10.1016/j.humimm.2021.02.012 Huang Y., Chen Y., Castro-Izaguirre N., Baruffol M., Brezzi M., Lang A., Li Y., Härdtle W., Oheimb G., Yang X., Liu X., Pei K., Both S., Yang B., Eichenberg D., Assmann T., Bauhus J., Behrens T., Buscot F., Chen X., Chesters D., Ding B., Durka W., Erfmeier A., Fang J., Fischer M., Guo L., Guo D., Gutknecht J., He J., He C., Hector A., Hönig L., Hu R., Klein A., Kühn P., Liang Y., Li S., Michalski S., Scherer‐Lorenzen M., Schmidt K., Scholten T., Schuldt A., Shi X., Tan M., Tang Z., Trogisch S., Wang Z., Welk E., Wirth C., Wubet T., Xiang W., Yu M., Yu X., Zhang J., Zhang S., Zhang N., Zhou H., Zhu C., Zhu L., Bruelheide H., Ma K., Niklaus P., and Schmid B., 2018, Impacts of species richness on productivity in a large-scale subtropical forest experiment, Science, 362: 80-83. https://doi.org/10.1126/science.aat6405 PMid:30287660

RkJQdWJsaXNoZXIy MjQ4ODYzMg==