Tree Genetics and Molecular Breeding 2024, Vol.14, No.3, 106-118 http://genbreedpublisher.com/index.php/tgmb 115 showcasing the advancements in understanding tree genetics and improving breeding practices. This study thus serves as a valuable resource for researchers, providing a comprehensive overview of the current state of tree genomic research and its applications. Future research should focus on several key areas to further advance tree genomic research and its applications. First, there is a need for more comprehensive studies that integrate aboveground and belowground genomic data to provide a complete picture of tree biology. Second, the development of more efficient and scalable sequencing methods will be crucial for large-scale genomic projects like the Darwin Tree of Life Project. Third, landscape genomics should be further explored to understand the genetic basis of tree adaptation to changing environments, which will be essential for developing effective conservation strategies. Additionally, the integration of genomic data with phenotypic and environmental data will enhance the accuracy of genomic selection in tree breeding, leading to more resilient and productive tree populations. Policymakers should support these research efforts by funding large-scale genomic projects and promoting the use of genomic data in conservation and breeding programs. By addressing these recommendations, future research can continue to unravel the complexities of tree genomes and contribute to the sustainable management and conservation of tree species. Acknowledgments Authors sincerely thank all the experts and scholars who reviewed the manuscript of this study. Their valuable comments and suggestions have contributed to the improvement of this study. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. Reference Amaral J., Ribeyre Z., Vigneaud J., Sow M., Fichot R., Messier C., Pinto G., Nolet P., and Maury S., 2020, Advances and promises of epigenetics for forest trees, Forests, 11(9): 976. https://doi.org/10.3390/f11090976 Anderson M., 2018, Emerging next-generation sequencing technologies, In: Netto G., and Schrijver I. (eds.), Genomic applications in pathology, Springer, New York, USA, pp.19-29. https://doi.org/10.1007/978-1-4939-0727-4_2 Asefa M., Worthy S.J., Cao M., Song X., Lozano Y.M., and Yang J., 2022. Above and belowground plant traits are not consistent in response to drought and competition treatments, Annals of Botany, 130(7): 939-950. https://doi.org/10.1093/aob/mcac108 PMid:36001733 PMCid:PMC9851322 Bansal G., Narta K., and Teltumbade M., 2018, Next-generation sequencing: technology, advancements, and applications, In: Shanker A. (ed.), Bioinformatics: sequences, structures, phylogeny, Springer, Singapore, pp.15-46. https://doi.org/10.1007/978-981-13-1562-6_2 PMCid:PMC5750229 Benavides R., Carvalho B., Bastias C., López-Quiroga D., Mas A., Cavers S., Gray A., Albet A., Alía R., Ambrosio O., Aravanopoulos F., Auñón F., Avanzi C., Avramidou E., Bagnoli F., Ballesteros E., Barbas E., Bastien C., Bernier F., Bignalet H., Bouic D., Brunetto W., Buchovska J., Cabanillas-Saldaña A., Cheval N., Climent J., Corréard M., Cremer E., Danusevičius D., Dauphin B., Caño F., Denou J., Dokhelar B., Dourthe R., Farsakoglou A., Fera A., Fonti P., Ganopoulos I., Barrio J., Gilg O., González‐Martínez S., Graf R., Grivet D., Gugerli F., Hartleitner C., Heer K., Hollenbach E., Hurel A., Issehuth B., Jean F., Jorge V., Jouineau A., Kappner J., Kärkkäinen K., Kesälahti R., Knutzen F., Kujala S., Kumpula T., Labriola M., Lalanne C., Lambertz J., Lascoux M., Provost G., Liesebach M., Malliarou E., Marchon J., Mariotte N., Martínez‐Sancho E., Matesanz S., Meischner H., Michotey C., Milesi P., Morganti S., Myking T., Nilsen A., Notivol E., Opgenoorth L., Østreng G., Pakull B., Piotti A., Plomion C., Poinot N., Pringarbe M., Puzos L., Pyhäjärvi T., Raffin A., Ramírez‐Valiente J., Rellstab C., Richter S., Robledo-Arnuncio J., Segundo S., Savolainen O., Schneck V., Schueler S., Scotti I., Semerikov V., Sønstebø J., Spanu I., Thévenet J., Tollefsrud, M., Turion N., Vendramin G., Villar M., Westin J., Fady B., and Valladares F., 2021, The GenTree Leaf Collection: inter‐ and intraspecific leaf variation in seven forest tree species in Europe, Global Ecology and Biogeography, 30(3): 590-597. https://doi.org/10.1111/geb.13239 Calleja-Rodriguez A., Li Z., Hallingbäck H., Sillanpää M., Wu H., Abrahamsson S., and García‐Gil M., 2019, Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design, Journal of Theoretical Biology, 462: 283-292.
RkJQdWJsaXNoZXIy MjQ4ODYzMg==