TGMB_2024v14n2

Tree Genetics and Molecular Breeding 2024, Vol.14, No.2, 81-94 http://genbreedpublisher.com/index.php/tgmb 93 Reference Becker S., and Boch J., 2021, TALE and TALEN genome editing technologies, Gene and Genome Editing, 2: 100007. https://doi.org/10.1016/j.ggedit.2021.100007 Bettaieb I., and Bouktila D., 2020, Genome-wide analysis of NBS-encoding resistance genes in the Mediterranean olive tree (Olea europaea subsp. europaea var. europaea): insights into their molecular diversity, evolution and function, Tree Genetics and Genomes, 16: 23. https://doi.org/10.1007/s11295-020-1415-9 Borrelli V., Brambilla V., Rogowsky P., Marocco A., and Lanubile A., 2018, The enhancement of plant disease resistance using CRISPR/Cas9 technology, Frontiers in Plant Science, 9: 1245. https://doi.org/10.3389/fpls.2018.01245 PMid:30197654 PMCid:PMC6117396 Candotti J., Christie N., Ployet R., Mostert-O’Neill M., Reynolds S., Neves L., Naidoo S., Mizrachi E., Duong T., and Myburg A., 2022, Haplotype mining panel for genetic dissection and breeding in Eucalyptus, The Plant Journal, 113: 174-185. https://doi.org/10.1111/tpj.16026 PMid:36394447 PMCid:PMC10107644 Dai Y., Hu G., Dupas A., Medina L., Blandels N., Clemente H., Ladouce N., Badawi M., Hernandez-Raquet G., Mounet F., Grima-Pettenati J., and Cassan-Wang H., 2020, Implementing the CRISPR/Cas9 technology in Eucalyptus hairy roots using wood-related genes, International Journal of Molecular Sciences, 21(10): 3408. https://doi.org/10.3390/ijms21103408 PMid:32408486 PMCid:PMC7279396 du Toit Y., Coles D., Mewalal R., Christie N., and Naidoo S., 2020, eCALIBRATOR: a comparative tool to identify key genes and pathways for Eucalyptus defense against biotic stressors, Frontiers in Microbiology, 11: 216. https://doi.org/10.3389/fmicb.2020.00216 PMid:32127794 PMCid:PMC7039109 Hutapea F.J., Weston C.J., Mendham D., and Volkova L., 2023, Sustainable management of Eucalyptus pellita plantations: a review, Forest Ecology and Management, 537: 120941. https://doi.org/10.1016/j.foreco.2023.120941 Kim T.H., and Lee S.W., 2022, Therapeutic application of genome editing technologies in viral diseases, International Journal of Molecular Sciences, 23(10): 5399. https://doi.org/10.3390/ijms23105399 PMid:35628210 PMCid:PMC9140762 Liu G., Lin Q., Jin S., and Gao C., 2022, The CRISPR-Cas toolbox and gene editing technologies, Molecular Cell, 82(2): 333-347. https://doi.org/10.1016/j.molcel.2021.12.002 PMid:34968414 Mhoswa L., O’Neill M., Mphahlele M., Oates C., Payn K., Slippers B., Myburg A., and Naidoo S., 2020, A genome-wide association study for resistance to the insect pest Leptocybe invasa in Eucalyptus grandis reveals genomic regions and positional candidate defence genes, Plant and Cell Physiology, 61(7): 1285-1296. https://doi.org/10.1093/pcp/pcaa057 PMid:32379870 Michelmore R.W., 2003, The impact zone: genomics and breeding for durable disease resistance, Current Opinion in Plant Biology, 6(4): 397-404. https://doi.org/10.1016/S1369-5266(03)00067-0 PMid:12873536 Miranda I.D.S., Auer C.G., dos Santos Á.F., Ferreira M.A., Tambarussi E.V., da Silva R.A.F., and Rezende E.H., 2021, Occurrence of Calonectria leaf blight in Eucalyptus benthamii progenies and potential for disease resistance, Tropical Plant Pathology, 46: 254-264. https://doi.org/10.1007/s40858-021-00426-4 Mushtaq M., Sakina A., Wani S., Shikari A., Tripathi P., Zaid A., Galla A., Abdelrahman M., Sharma M., Singh A., and Salgotra R., 2019, Harnessing genome editing techniques to engineer disease resistance in plants, Frontiers in Plant Science, 10: 550. https://doi.org/10.3389/fpls.2019.00550 PMid:31134108 PMCid:PMC6514154 Myburg A.A., Grattapaglia D., Tuskan G.A., Hellsten U., Hayes R.D., Grimwood J., Jenkins J., Lindquist E., Tice H., Bauer D., Goodstein D.M., Dubchak I., Poliakov A., Mizrachi E., Kullan A.R.K., Hussey S.G., Pinard D., van der Merwe K., Singh P., van Jaarsveld I., Silva-Junior O.B., Togawa R.C., Pappas M.R., Faria D.A., Sansaloni C.P., Petroli C.D., Yang X., Ranjan P., Tschaplinski T.J., Ye C.Y., Li T., Sterck L., Vanneste K., Murat F., Soler M., Clemente H.S., Saidi N., Cassan-Wang H., Dunand C., Hefer C.A., Bornberg-Bauer E., Kersting A.R., Vining K., Amarasinghe V., Ranik M., Naithani S., Elser J., Boyd A.E., Liston A., Spatafora J.W., Dharmwardhana P., Raja R., Sullivan C., Romanel E., Alves-Ferreira M., Külheim C., Foley W., Carocha V., Paiva J., Kudrna D., Brommonschenkel S.H., Pasquali G., Byrne M., Rigault P., Tibbits J., Spokevicius A., Jones R.C., Steane D.A., Vaillancourt R.E., Potts B.M., Joubert F., Barry K., Pappas G.J., Strauss S.H., Jaiswal P., Grima-Pettenati J., Salse J., Van de Peer Y., Rokhsar D.S., and Schmutz J., 2014, The genome of Eucalyptus grandis, Nature, 510: 356-362. https://doi.org/10.1038/nature13308 PMid:24919147

RkJQdWJsaXNoZXIy MjQ4ODYzMg==