Tree Genetics and Molecular Breeding 2024, Vol.14, No.1, 32-42 http://genbreedpublisher.com/index.php/tgmb 42 Meester B., Calderón B., Vries L., Pollier J., Goeminne G., Doorsselaere J., Chen M., Ralph J., Vanholme R., and Boerjan W., 2020, Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele, Nature Communications, 11: 5020. https://doi.org/10.1038/s41467-020-18822-w PMid:33024118 PMCid:PMC7538556 Meester B., Vanholme R., Vries L., Wouters M., Doorsselaere J., and Boerjan W., 2021, Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar, The Plant Journal, 108(3): 752-765. https://doi.org/10.1111/tpj.15468 PMid:34403547 Park J., Yoo C., Flanagan A., Pu Y., Debnath S., Ge Y., Ragauskas A., and Wang Z., 2017, Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release, Biotechnology for Biofuels, 10: 284. https://doi.org/10.1186/s13068-017-0972-0 PMid:29213323 PMCid:PMC5708096 Saleme M.D.L.S., Cesarino I., Vargas L., Kim H., Vanholme R., Goeminne G., Acker R.V., de Assis Fonseca F.C., Pallidis A., Voorend W., Junior J.N., Padmakshan D., Van Doorsselaere J., Ralph J., and Boerjan W., 2017, Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification in poplar, Plant Physiology, 175(3): 1040-1057. https://doi.org/10.1104/pp.17.00920 PMid:28878037 PMCid:PMC5664470 Triozzi P., Schmidt H., Dervinis C., Kirst M., and Conde D., 2021, Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba, Tree Physiology, 41(11): 2216-2227. https://doi.org/10.1093/treephys/tpab066 PMid:33960379 PMCid:PMC8597961 Tsai C., Xu P., Xue L., Hu H., Nyamdari B., Naran R., Zhou X., Goeminne G., Gao R., Gjersing E., Dahlen J., Pattathil S., Hahn M., Davis M., Ralph J., Boerjan W., and Harding S., 2019, Compensatory guaiacyl lignin biosynthesis at the expense of syringyl lignin in 4CL1-knockout poplar, Plant Physiology, 183(1): 123-136. https://doi.org/10.1104/pp.19.01550 PMid:32139476 PMCid:PMC7210618 Van Acker R., Déjardin A., Desmet S., Hoengenaert L., Vanholme R., Morreel K., Laurans F., Kim H., Santoro N., Foster C., Goeminne G., Légée F., Lapierre C., Pilate G., Ralph J., and Boerjan W., 2017, Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1, Plant Physiol., 175(3): 1018-1039. https://doi.org/10.1104/pp.17.00834 PMid:28878036 PMCid:PMC5664467 Vries L., Brouckaert M., Chanoca A., Kim H., Regner M., Timokhin V., Sun Y., Meester B., Doorsselaere J., Goeminne G., Chiang V., Wang J., Ralph J., Morreel K., Vanholme R., and Boerjan W., 2021, CRISPR‐Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula ×P. alba, Plant Biotechnology Journal, 19(11): 2221-2234. https://doi.org/10.1111/pbi.13651 PMid:34160888 PMCid:PMC8541784 Wang S., Zhang S., Wang W., Xiong X., Meng F., and Cui X., 2015, Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system, Plant Cell Reports, 34: 1473-1476. https://doi.org/10.1007/s00299-015-1816-7 PMid:26082432
RkJQdWJsaXNoZXIy MjQ4ODYzMg==