TGMB_2024v14n1

Tree Genetics and Molecular Breeding 2024, Vol.14, No.1, 22-31 http://genbreedpublisher.com/index.php/tgmb 31 Okpara D., Mbah E., and Chukwu E., 2014, Assessment of growth and yield of some high-and low-cyanide cassava genotypes in acid ultisols of south eastern Nigeria, African Journal of Biotechnology, 13: 651-656. https://doi.org/10.5897/AJB2013.13200 Oliveira E., Santana F., Oliveira L., and Santos V., 2014, Genetic parameters and prediction of genotypic values for root quality traits in cassava using REML/BLUP, Genetics and Molecular Research, 13(3): 6683-700. https://doi.org/10.4238/2014.August.28.13 PMid:25177949 Parmar A., Sturm B., and Hensel O., 2017, Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses, Food Security, 9: 907-927. https://doi.org/10.1007/s12571-017-0717-8 Phuntupan K., and Banterng P., 2017, Physiological determinants of storage root yield in three cassava genotypes under different nitrogen supply, The Journal of Agricultural Science, 155: 978-992. https://doi.org/10.1017/S0021859617000053 Pratiwi H., Wahyuni T., and Nugrahaeni N., 2022, Multiple tolerances of cassava germplasm to drought stress and red spider mite attacks, Biosaintifika: Journal of Biology & Biology Education, 14(2): 293-300. https://doi.org/10.15294/biosaintifika.v14i2.35781 Pujol B., Mühlen G., Garwood N., Horoszowski Y., Douzery E., and McKey D., 2005, Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives, The New Phytologist, 166(1): 305-318. https://doi.org/10.1111/j.1469-8137.2004.01295.x PMid:15760372 Rabbi I., Kayondo S., Bauchet G., Yusuf M., Aghogho C., Ogunpaimo K., Uwugiaren R., Smith I., Peteti P., Agbona A., Parkes E., Lydia E., Wolfe M., Jannink J., Egesi C., and Kulakow P., 2020, Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava, Plant Molecular Biology, 109(3): 195-213. https://doi.org/10.1101/2020.04.25.061440 Shan Z., Luo X., Wei M., Huang T., Khan A., and Zhu Y., 2018, Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz), Scientific Reports, 8: 17982. https://doi.org/10.1038/s41598-018-35711-x PMid:30568257 PMCid:PMC6299285 Suja G., John K., Sreekumar J., and Srinivas T., 2010, Short-duration cassava genotypes for crop diversification in the humid tropics: growth dynamics, biomass, yield and quality, Journal of the Science of Food and Agriculture, 90(2): 188-198. https://doi.org/10.1002/jsfa.3781 PMid:20355030 Zhao P., Liu, P., Shao J., Li C., Wang B., Guo X., Yan B., Xia Y., and Peng M., 2015, Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth, Journal of Experimental Botany, 66(5): 1477-1488. https://doi.org/10.1093/jxb/eru507 PMid:25547914 PMCid:PMC4438449

RkJQdWJsaXNoZXIy MjQ4ODYzMg==