TGMB_2024v14n1

Tree Genetics and Molecular Breeding 2024, Vol.14, No.1, 1-7 http://genbreedpublisher.com/index.php/tgmb 7 international cooperation and information sharing can promote the protection and exchange of apple resources worldwide. In addition, follow-up research can also strengthen the research and protection of traditional varieties and wild varieties, and tap their genetic potential, which is of great significance to the sustainable development of the apple industry. Acknowledgments The author would like to appreciate the two anonymous peer reviewers for their suggestions on the manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ahmad R., Anjum M.A., Naz S., and Balal R.M., 2021, Applications of molecular markers in fruit crops for breeding programs-A Review, Phyton., 90(1): 17-34. https://doi.org/10.32604/phyton.2020.011680 Basannagari B., and Kala C.P., 2013, Climate change and apple farming in Indian Himalayas: a study of local perceptions and responses, PLoS One, 8(10): e77976. Bhargava A., and Bansal A., 2021, Classification and grading of multiple varieties of apple fruit, Food Anal. Methods, 14: 1359-1368. https://doi.org/10.1007/s12161-021-01970-0 Buiteveld J., Putten H.J.K., Kodde L., Laros I., Tumino G., Howard N.P., van de Weg E., and Smulders M.J.M., 2021, Advanced genebank management of genetic resources of European wild apple, Malus sylvestris, using genome-wide SNP array data, Tree Genetics & Genomes, 17: 32. Gao Y., Liu F., Wang K., Wang D., Gong X., Liu L., Richards C.M., Henk A.D., and Volk G.M., 2015, Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources, Tree Genetics & Genomes, 11: 106. https://doi.org/10.1007/s11295-015-0913-7 Gepts P., 2006, Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy, Crop Science, 46(5): 2278-2292. Marconi G., Ferradini N., Russi L., Concezzi L., Veronesi F., and Albertini E., 2018, Genetic characterization of the apple germplasm collection in central Italy: The value of local varieties, Front Plant Sci., 9: 1460. Papp D., Gao L., Thapa R., Olmstead D., and Khan A., 2020, Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding, CABI Agriculture and Bioscience, 1: 16. https://doi.org/10.1186/s43170-020-00017-4 Shaziya H., Bhat K.M., Aarifa J., Sheikh M., Ahmad W.S., Din K.M.U., and Bisati I.A., 2018, Managing genetic resources in temperate fruit crops, Economic Affairs, 63(4): 987-996. https://doi.org/10.30954/0424-2513.4.2018.23 Volk G.M., Carver D., Irish B.M., Marek L., Frances A., Greene S., Khoury C.K., Bamberg J., del Rio A., Warburton M.L., and Bretting P.K., 2023, Safeguarding plant genetic resources in the United States during global climate change, Crop Science, 63(4): 2274-2296. Wang N., Jiang S., Zhang Z., Fang H., Xu H., Wang Y., and Chen X., 2018, Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples, Hortic. Res., 5: 70. https://doi.org/10.1038/s41438-018-0084-4 Wang N., Zhang J., Yu L., Zou Q., Guo Z.W., Mao Z.L., Wang Y.C., Jiang S.H., Fang H.C., Xu H.F., Su M.Y., Zhang Z.Y., Feng S.Q., Chen X.L., Wang Z.G., Jiang Z.T., Dong M.X., Xu Y.H., Li J.M., Mao Z.Q., and Chen X.S., 2019, Progress on the resource breeding of kernel fruits II : Progress on the germplasm resources, quality development and genetic breeding of apple in China, Zhiwu Yichuan Ziyuan Xuebao (Journal of Plant Genetic Resources), 20(4): 801-812.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==