PGT_2025v16n5

Plant Gene and Trait 2025, Vol.16, No.5, 225-233 http://genbreedpublisher.com/index.php/pgt 232 Li F., Chen M., Zhang H., Wu Q., and Han Y., 2022b, Production of ginsenoside compound K by microbial cell factory using synthetic biology-based strategy: a review, Biotechnology Letters, 45: 163-174. https://doi.org/10.1007/s10529-022-03326-y Li M., Ma M., Wu Z., Liang X., Zheng Q., Li D., An T., and Wang G., 2023, Advances in the biosynthesis and metabolic engineering of rare ginsenosides, Applied Microbiology and Biotechnology, 107: 3391-3404. https://doi.org/10.1007/s00253-023-12549-6 Liu C., Wang K., Yun Z., Liu W., Zhao M., Wang Y., Hu J., Liu T., Wang N., Wang Y., and Zhang M., 2023, Functional study of PgGRAS68-01 gene involved in the regulation of ginsenoside biosynthesis in Panax ginseng, International Journal of Molecular Sciences, 24(4): 3347. https://doi.org/10.3390/ijms24043347 Mi Y., Xu X., Hong L., Jiang M., Chen B., Li X., Wang H., Zou Y., Zhao X., Li Z., Guo D., and Yang W., 2023, Comparative characterization of the ginsenosides from six Panax herbal extracts and their in vitro rat gut microbial metabolites by advanced liquid chromatography-mass spectrometry approaches, Journal of Agricultural and Food Chemistry, 71(24): 9391-9403. https://doi.org/10.1021/acs.jafc.3c01093 Morshed M., Ahn J., Mathiyalagan R., Rupa E., Akter R., Karim M., Jung D., Yang D., Yang D., and Jung S., 2023, Antioxidant activity of Panax ginseng to regulate ROS in various chronic diseases, Applied Sciences, 13(5): 2893. https://doi.org/10.3390/app13052893 Park S., Chung S., Chung M., Choi H., Hwang J., and Park J., 2021, Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: a systematic review and meta-analysis, Journal of Ginseng Research, 46: 188-205. https://doi.org/10.1016/j.jgr.2021.10.002 Qiu S., and Blank L., 2023, Recent advances in yeast recombinant biosynthesis of the triterpenoid protopanaxadiol and glycosylated derivatives thereof, Journal of Agricultural and Food Chemistry, 71(5): 2197-2210. https://doi.org/10.1021/acs.jafc.2c06888 Qiu S., and Blank L., 2025, Long-term yeast cultivation coupled with in situ extraction for high triterpenoid production, Journal of Agricultural and Food Chemistry, 73(13): 7933-7943. https://doi.org/10.1021/acs.jafc.5c00273 Qiu S., Gilani M., Müller C., Zarazua-Navarro R., Liebal U., Eerlings R., and Blank L., 2024, Cultivation optimization promotes ginsenoside and universal triterpenoid production by engineered yeast, New Biotechnology, 83: 219-230. https://doi.org/10.1016/j.nbt.2024.08.505 Shi Y., Wang D., Li R., Huang L., Dai Z., and Zhang X., 2021, Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides, Metabolic Engineering, 67: 104-111. https://doi.org/10.1016/j.ymben.2021.06.002 Son S., Kang J., Shin Y., Lee C., Sung B., Lee J., and Lee W., 2024, Sustainable production of natural products using synthetic biology: ginsenosides, Journal of Ginseng Research, 48: 140-148. https://doi.org/10.1016/j.jgr.2023.12.006 Song Y., Sung S., Jang M., Lim T., Cho C., Han C., and Hong H., 2018, Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer), International Journal of Biological Macromolecules, 116: 1089-1097. https://doi.org/10.1016/j.ijbiomac.2018.05.132 Song Y., Zhang Y., Wang X., Yu X., Liao Y., Zhang H., Li L., Wang Y., Liu B., and Li W., 2024, Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis, Horticulture Research, 11(6): uhae107. https://doi.org/10.1093/hr/uhae107 Vu V., Nguyen N., Anh N., Tung P., Thuong P., and Tung N., 2023, Panaxindole, a novel indole alkaloid N-glucoside from the leaves of Panax vietnamensis Ha et Grushv. (Vietnamese ginseng), Journal of Natural Medicines, 77: 972-977. https://doi.org/10.1007/s11418-023-01728-4 Wang D., Wang J., Shi Y., Li R., Fan F., Huang Y., Li W., Chen N., Huang L., Dai Z., and Zhang X., 2020, Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform, Metabolic Engineering, 61: 131-140. https://doi.org/10.1016/j.ymben.2020.05.007 Wang L., Shao L., Huang S., Liu Z., Zhang W., Hu K., and Huang W., 2023, Metabolic characteristics of ginsenosides from Panax ginseng in rat feces mediated by gut microbiota, Journal of Pharmaceutical and Biomedical Analysis, 237: 115786. https://doi.org/10.1016/j.jpba.2023.115786 Wang P., Wei W., Ye W., Li X., Zhao W., Yang C., Li C., Yan X., and Zhou Z., 2019, Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency, Cell Discovery, 5: 5. https://doi.org/10.1038/s41421-018-0075-5 Wei G., Zhang G., Li M., Zheng Y., Zheng W., Wang B., Zhang Z., Zhang X., Huang Z., Wei T., Shi L., Chen S., and Dong L., 2024, Panax notoginseng: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides, Horticulture Research, 11(8): uhae170. https://doi.org/10.1093/hr/uhae170 Xu F., Valappil A., Mathiyalagan R., Tran T., Ramadhania Z., Awais M., and Yang D., 2023, In vitro cultivation and ginsenosides accumulation in Panax ginseng: a review, Plants, 12(17): 3165. https://doi.org/10.3390/plants12173165

RkJQdWJsaXNoZXIy MjQ4ODYzNA==