PGT_2025v16n5

Plant Gene and Trait 2025, Vol.16, No.5, 194-205 http://genbreedpublisher.com/index.php/pgt 204 Han Y., Tang A., Wan H., Zhang T., Sung T., Wang J., Yang W., Pan H., and Zhang Q., 2018, An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Frontiers in Plant Science, 9: 481. https://doi.org/10.3389/fpls.2018.00481 Han Y., Tang A., Yu J., Sung T., Wang J., Yang W., Pan H., and Zhang Q., 2019, RcAP1, a homolog of APETALA1, is associated with flower bud differentiation and floral organ morphogenesis in Rosa chinensis, International Journal of Molecular Sciences, 20(14): 3557. https://doi.org/10.3390/ijms20143557 Hibrand Saint-Oyant L., Ruttink T., Hamama L., Kirov I., Lakhwani D., Zhou N., Bourke P.M., Daccord N., Leus L., Schulz D., van de Geest H., Hesselink T., Van Laere K., Debray K., Balzergue S., Thouroude T., Chastellier A., Jeauffre J., Voisine L., Gaillard S., Borm T.J.A., Arens P., Voorrips R.E., Maliepaard C., Neu E., Linde M., Le Paslier M.C., Bérard A., Bounon R., Clotault J., Choisne N., Quesneville H., Kawamura K., Aubourg S., Sakr S., Smulders M.J.M., Schijlen E., Bucher E., Debener T., De Riek J., and Foucher F., 2018, A high-quality sequence of Rosa chinensis to elucidate genome structure and ornamental traits, Nature Plants, 4: 473-484. https://doi.org/10.1038/s41477-018-0166-1 Hu G., and You F., 2022, Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management, Renewable and Sustainable Energy Reviews, 168: 112790. https://doi.org/10.1016/j.rser.2022.112790 Jiang C., Bi Y., Zhang R., and Feng S., 2020, Expression of RcHSP70, heat shock protein 70 gene from Chinese rose, enhances host resistance to abiotic stresses, Scientific Reports, 10: 2445. https://doi.org/10.1038/s41598-020-58745-6 Kang Y., Sun P., Yang Y., Li M., Wang H., Sun X., and Jin W., 2024, Genome-wide analysis of the Hsf gene family in Rosa chinensis and RcHsf17 function in thermotolerance, International Journal of Molecular Sciences, 26(1): 287. https://doi.org/10.3390/ijms26010287 Lu J., Sun J., Jiang A., Bai M., Fan C., Liu J., Ning G., and Wang C., 2020, Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis, Journal of Experimental Botany, 71(14): 4057-4068. https://doi.org/10.1093/jxb/eraa161 Lu J., Wang W., Fan C., Sun J., Yuan G., Guo Y., Yu X., Chang Y., Liu J., and Wang C., 2024, Telo boxes within the AGAMOUS second intron recruit histone 3 lysine 27 methylation to increase petal number in rose in response to low temperatures, The Plant Journal, 118(5): 1486-1499. https://doi.org/10.1111/tpj.16691 Ouyang L., Leus L., De Keyser E., and Van Labeke M.C., 2022, Temperature is an important driver for cold acclimation in garden roses, Scientia Horticulturae, 296: 110905. https://doi.org/10.1016/j.scienta.2022.110905 Owen W.G., Meng Q., and Lopez R.G., 2018, Promotion of flowering from far-red radiation depends on the photosynthetic daily light integral, HortScience, 53(4): 465-471. https://doi.org/10.21273/HORTSCI12544-17 Raymond O., Gouzy J., Just J., Badouin H., Verdenaud M., Lemainque A., Vergne P., Moja S., Choisne N., Pont C., Carrère S., Caissard J., Couloux A., Cottret L., Aury J., Szécsi J., Latrasse D., Madoui M.A., François L., Fu X., Yang S.H., Dubois A., Piola F., Larrieu A., Perez M., Labadie K., Perrier L., Govetto B., Labrousse Y., Villand P., Bardoux C., Boltz V., Lopez-Roques C., Heitzler P., Vernoux T., Vandenbussche M., Quesneville H., Boualem A., Bendahmane A., Liu C., Le Bris M., Salse J., Baudino S., Benhamed M., Wincker P., and Bendahmane M., 2018, The Rosa genome provides new insights into the domestication of modern roses, Nature Genetics, 50: 772-777. https://doi.org/10.1038/s41588-018-0110-3 Sapounas A., Katsoulas N., Slager B., Bezemer R., and Lelieveld C., 2020, Design, control, and performance aspects of semi-closed greenhouses, Agronomy, 10(11): 1739. https://doi.org/10.3390/agronomy10111739 Shin Y.C., Yeon J.Y., and Kim W.S., 2023, Influence of suboptimal temperature on flower quality and floral organ development in spray-type cut rose ‘Pink Shine’, Horticulturae, 9(8): 861. https://doi.org/10.3390/horticulturae9080861 Soufflet-Freslon V., Araou E., Jeauffre J., Thouroude T., Chastellier A., Michel G., Mikanagi Y., Kawamura K., Banfield M., Oghina-Pavie C., Clotault J., and Pernet A., and Foucher F., 2021, Diversity and selection of the continuous-flowering gene, RoKSN, in rose, Horticulture Research, 8: 76. https://doi.org/10.1038/s41438-021-00512-3 Sun J., Lu J., Bai M., Chen Y., Wang W., Fan C., Liu J., Ning G., and Wang C., 2021, Phytochrome-interacting factors interact with transcription factor CONSTANS to suppress flowering in rose, Plant Physiology, 186(2): 1186-1201. https://doi.org/10.1093/plphys/kiab109 Trivellini A., Toscano S., Romano D., and Ferrante A., 2023, LED lighting to produce high-quality ornamental plants, Plants, 12(8): 1667. https://doi.org/10.3390/plants12081667 Wang H., Xu W., Zhang X., Wang L., Jia S., Zhao S., Li W., Lu R., Ren A., and Zhang S., 2024, Transcriptomics and metabolomics analyses of Rosa hybrida to identify heat stress response genes and metabolite pathways, BMC Plant Biology, 24: 874. https://doi.org/10.1186/s12870-024-05543-1 Wang W., Sun J., Fan C., Yuan G., Zhou R., Lu J., Liu J., and Wang C., 2025, RcSRR1 interferes with the RcCSN5B-mediated deneddylation of RcCRL4 to modulate RcCO proteolysis and prevent rose flowering under red light, Horticulture Research, 12(5): uhaf025. https://doi.org/10.1093/hr/uhaf025

RkJQdWJsaXNoZXIy MjQ4ODYzNA==