Plant Gene and Trait 2025, Vol.16, No.4, 182-193 http://genbreedpublisher.com/index.php/pgt 193 Wang Z., Wang M., Ding Y., Li T., Jiang S., Kang S., Wei S., Xie J., Huang J., Hu W., Li H., and Tang H., 2023, The pitaya flower tissue’s gene differential expression analysis between self-incompatible and self-compatible varieties for the identification of genes involved in self-incompatibility regulation, International Journal of Molecular Sciences, 24(14): 11406. https://doi.org/10.3390/ijms241411406 Wu Z., Deng H., Liang G., Ye X., Qin Y., and Huang L., 2021, Construction of a high-density genetic map for pitaya using the whole genome resequencing approach, Horticulturae, 7(12): 534. https://doi.org/10.3390/horticulturae7120534 Xu J., and Wang Z., 2024, A review of the morphological structure and photosynthetic metabolic characteristics of dragon fruit (Hylocereus spp.), Biological Evidence, 14(6): 281-292. https://doi.org/10.5376/be.2024.14.0029 Yao L., Zhang T., Peng S., Xu D., Liu Z., Li H., Hu L., and Mo H., 2022, Fe2+ protects postharvest pitaya (Hylocereus undulatus britt) from Aspergillus. flavus infection by directly binding its genomic DNA, Food Chemistry: Molecular Sciences, 5: 100135. https://doi.org/10.1016/j.fochms.2022.100135 Zheng J., Meinhardt L.W., Goenaga R., Zhang D., and Yin Y., 2021, The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes, Horticulture Research 8: 63. https://doi.org/10.1038/s41438-021-00501-6 Zhou J., Wang L., Xiao T., Wang Z., Mao Y., and Ma Y., 2021, Physiological responses and proteomic analysis on the cold stress responses of annual pitaya (Hylocereus spp.) branches, Journal of Chemistry, 2021(1): 1416925. https://doi.org/10.1155/2021/1416925 Zhou J., Wang Z., Mao Y., Wang L., Xiao T., Hu Y., Zhang Y., and Ma Y., 2020, Proteogenomic analysis of pitaya reveals cold stress-related molecular signature, PeerJ, 8: e8540. https://doi.org/10.7717/peerj.8540
RkJQdWJsaXNoZXIy MjQ4ODYzNA==