PGT_2025v16n4

Plant Gene and Trait 2025, Vol.16, No.4, 173-181 http://genbreedpublisher.com/index.php/pgt 181 Rempelos L., Sufar E., Gilroy J., Shotton P., Leifert H., Średnicka-Tober D., Hasanaliyeva G., Rosa E., Hajšlová J., Schulzova V., Cakmak I., Ozturk L., Brandt K., Seal C., Wang J., Schmidt C., and Leifert C., 2023, Effect of climatic conditions, and agronomic practices used in organic and conventional crop production on yield and nutritional composition parameters in potato, cabbage, lettuce and onion; results from the long-term NFSC-trials, Agronomy, 13(5): 1225. https://doi.org/10.3390/agronomy13051225 Saha C., Bhattacharya P., Sengupta S., Dasgupta S., Patra S., Bhattacharyya K., and Dey P., 2021, Response of cabbage to soil test-based fertilization coupled with different levels of drip irrigation in an inceptisol, Irrigation Science, 40: 239-253. https://doi.org/10.1007/s00271-021-00761-z Sarkar D., Sankar A., Devika O., Singh S., Shikha, Parihar M., Rakshit A., Sayyed R., Gafur A., Ansari M., Danish S., Fahad S., and Datta R., 2021, Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes, Scientific Reports, 11: 15680. https://doi.org/10.1038/s41598-021-95092-6 Sikora J., Niemiec M., Szeląg-Sikora A., Gródek-Szostak Z., Kuboń M., and Komorowska M., 2020, The impact of a controlled-release fertilizer on greenhouse gas emissions and the efficiency of the production of Chinese cabbage, Energies, 13(8): 2063. https://doi.org/10.3390/en13082063 Singh H., Kerketta A., Prasad V., and Bahadur V., 2023, Effect of organic manure and bio fertilizer on growth, yield and quality in cabbage, International Journal of Environment and Climate Change, 13(10): 1982-1988. https://doi.org/10.9734/ijecc/2023/v13i102856 Wang J., Zhai B., Shi D., Chen A., and Liu C., 2024, How does bio-organic fertilizer combined with biochar affect Chinese small cabbage’s growth and quality on newly reclaimed land, Plants, 13(5): 598. https://doi.org/10.3390/plants13050598 Wang Y., Liu Z., Hao X., Wang Z., Wang Z., Liu S., Tao C., Wang D., Wang B., Shen Z., Shen Q., and Li R., 2023, Biodiversity of the beneficial soil-borne fungi steered by Trichoderma-amended biofertilizers stimulates plant production, NPJ Biofilms and Microbiomes, 9: 46. https://doi.org/10.1038/s41522-023-00416-1 Yfantopoulos D., Ntatsi G., Karkanis A., and Savvas D., 2024, Evaluation of the role of legumes in crop rotation schemes of organic or conventionally cultivated cabbage, Agronomy, 14(2): 297. https://doi.org/10.3390/agronomy14020297 Zhang Y., Zhang J., Zhang J., Li H., Li C., and Wang X., 2024, Effects of the application of organic fertilizers on the yield, quality, and soil properties of open-field Chinese cabbage (Brassica rapa spp. pekinensis) in China: a meta-analysis, Agronomy, 14(11): 2555. https://doi.org/10.3390/agronomy14112555 Zhao H., Xie T., Xiao H., and Gao M., 2022, Biochar-based fertilizer improved crop yields and n utilization efficiency in a maize-Chinese cabbage rotation system, Agriculture, 12(7): 1030. https://doi.org/10.3390/agriculture12071030

RkJQdWJsaXNoZXIy MjQ4ODYzNA==