Plant Gene and Trait 2025, Vol.16, No.4, 162-172 http://genbreedpublisher.com/index.php/pgt 171 Martinez-Garcia J., and Rodriguez-Concepcion M., 2023, Molecular mechanisms of shade tolerance in plants, The New Phytologist, 239(4): 1190-1202. https://doi.org/10.1111/nph.19047 Modolo G., Santos V., and Ferreira M., 2021, Testing for functional significance of traits: effect of the light environment in tropical tree saplings, Ecology and Evolution, 11: 6480-6492. https://doi.org/10.1002/ece3.7499 Paponov I., and Paponov M., 2025, Supplemental lighting in controlled environment agriculture: enhancing photosynthesis, growth, and sink activity, CABI Reviews, 20: 1. https://doi.org/10.1079/cabireviews.2025.0008 Piao H., Li S., Yan Z., and Li C., 2020, Understanding nutrient allocation based on leaf nitrogen isotopes and elemental ratios in the karst region of southwest China, Agriculture, Ecosystems and Environment, 294: 106864. https://doi.org/10.1016/j.agee.2020.106864 Raai M., Zain N., Osman N., Rejab N., Sahruzaini N., and Cheng A., 2020, Effects of shading on the growth, development and yield of winged bean (Psophocarpus tetragonolobus), Ciência Rural, 50(2): e20190570. https://doi.org/10.1590/0103-8478cr20190570 Ren B., Yu W., Liu P., Zhao B., and Zhang J., 2022, Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading, The Crop Journal, 11(1): 269-277. https://doi.org/10.1016/j.cj.2022.06.003 Ren Y., Guo G., Wang Z., Zhu L., and Geng B., 2025, Response of yield and protein content of forage mulberry to irrigation in north China plain, Agronomy, 15(5): 1016. https://doi.org/10.3390/agronomy15051016 Schmiege S., Buckley B., Stevenson D., Cuong T., Nam L., and Griffin K., 2020, Contrasting physiological traits of shade tolerance in Pinus and Podocarpaceae native to a tropical Vietnamese forest: insight from an aberrant flat-leaved pine, Tree Physiology, 41(2): 223-239. https://doi.org/10.1093/treephys/tpaa123 Shi S., Li H., Wang X., Wang Z., Xu J., He X., and Yang Z., 2025, Greater biomass production under elevated CO2 is attributed to physiological optimality, trade-offs in nutrient allocation, and oxidative defense in drought-stressed mulberry, Antioxidants, 14(4): 383. https://doi.org/10.3390/antiox14040383 Solanki B., Choudhary R., Ninama A., Ram K., and Jaiswal J., 2024, Review on multilayer farming: a way towards farmer prosperity, International Journal of Environment and Climate Change, 14(1): 150-154. https://doi.org/10.9734/ijecc/2024/v14i13818 Su S., Jin N., and Wei X., 2023, Effects of thinning on the understory light environment of different stands and the photosynthetic performance and growth of the reforestation species Phoebe bournei, Journal of Forestry Research, 35: 6. https://doi.org/10.1007/s11676-023-01651-0 Sun Z., Geng W., Ren B., Zhao B., Liu P., and Zhang J., 2023, Responses of the photosynthetic characteristics of summer maize to shading stress, Journal of Agronomy and Crop Science, 209(3): 330-344. https://doi.org/10.1111/jac.12630 Wang L., Dang Q., and Tedla B., 2020, Biochar and alternate partial root-zone irrigation greatly enhance the effectiveness of mulberry in remediating lead-contaminated soils, Journal of Plant Ecology, 13: 757-764. https://doi.org/10.1093/jpe/rtaa063 Wang L., Wang N., and Ji G., 2022a, Responses of biomass allocation and photosynthesis in mulberry to Pb-contaminated soil, Acta Physiologiae Plantarum, 44: 43. https://doi.org/10.1007/s11738-022-03370-1 Wang X., Hu Y., Guo H., Zhang J., Tang T., and Zeng Q., 2022b, Spatial differentiation of the coupling characteristics of soil carbon and nitrogen on mulberry plantations in China, Journal of Resources and Ecology, 14: 84-91. https://doi.org/10.5814/j.issn.1674-764x.2023.01.008 Wang Y., Huang R., and Zhou Y., 2021, Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.), Journal of Integrative Agriculture, 20: 1250-1265. https://doi.org/10.1016/S2095-3119(20)63442-6 Win A., Sankhuan D., Chintakovid W., and Supaibulwatana K., 2022, Bioactive compounds produced in leaves of mulberry (Morus alba L.) transplants under modified environments of root and aerial zones, Plants, 11(21): 2850. https://doi.org/10.3390/plants11212850 Wu Y., Chen M., Huang S., Li Y., Li M., He D., Hu P., Duan T., Gong W., Yan Y., Kwame T., Raza M., and Yang W., 2025, Combining modelling and experiment to quantify light interception and inter row variability on intercropped soybean in strip intercropping, European Journal of Agronomy, 164: 127508. https://doi.org/10.1016/j.eja.2025.127508 Xu C., De Frenne P., Blondeel H., De Pauw K., Landuyt D., Lorer E., Sanczuk P., Verheyen K., and De Lombaerde E., 2023, Light more than warming impacts understory tree seedling growth in a temperate deciduous forest, Forest Ecology and Management, 549: 121496. https://doi.org/10.1016/j.foreco.2023.121496
RkJQdWJsaXNoZXIy MjQ4ODYzNA==