Plant Gene and Trait 2025, Vol.16, No.4, 162-172 http://genbreedpublisher.com/index.php/pgt 170 Feng L., Raza M., Chen Y., Khalid M., Meraj T., Ahsan F., Fan Y., Du J., Wu X., Song C., Liu C., Bawa G., Zhang Z., Yuan S., Yang F., and Yang W., 2019, Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system, PLoS One, 14(2): e0212885. https://doi.org/10.1371/journal.pone.0212885 Feng X., Zhong M., Zhao X., Zhang X., Hu Y., and Zhang H., 2025, Intercropping forage mulberry benefits nodulation and growth of soybeans, Agriculture, 15(8): 902. https://doi.org/10.3390/agriculture15080902 García-Pérez J., Oliet J., Villar-Salvador P., and Guzmán J., 2021, Root growth dynamics and structure in seedlings of four shade tolerant Mediterranean species grown under moderate and low light, Forests, 12(11): 1540. https://doi.org/10.3390/f12111540 Gatti M., Cornaglia P., and Golluscio R., 2023, Morphogenetic and structural responses to tree-shading in three temperate perennial grasses: implications for growth, persistence and defoliation practices, Agroforestry Systems, 97: 549-559. https://doi.org/10.1007/s10457-023-00809-3 Gerovac J., Craver J., Boldt J., and Lopez R., 2016, Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens, Hortscience, 51(5): 497-503. https://doi.org/10.21273/HORTSCI.51.5.497 Gong X., Liu C., Dang K., Wang H., Du W., Qi H., Jiang Y., and Feng B., 2022, Mung bean (Vigna radiata L.) source leaf adaptation to shading stress affects not only photosynthetic physiology metabolism but also control of key gene expression, Frontiers in Plant Science, 13: 753264. https://doi.org/10.3389/fpls.2022.753264 Jiang Z., Wang Y., Zheng Y., Cai M., Peng C., and Li W., 2020, Physiological and transcriptomic responses of Mikania micrantha stem to shading yield novel insights into its invasiveness, Biological Invasions, 23: 2927-2943. https://doi.org/10.1007/s10530-021-02546-z Jin F., Wang Z., Zhang H., Huang S., Chen M., Kwame T., Yong T., Wang X., Yang F., Liu J., Yu L., Pu T., Fatima A., Rahman R., Yan Y., Yang W., and Wu Y., 2024, Quantification of spatial-temporal light interception of crops in different configurations of soybean-maize strip intercropping, Frontiers in Plant Science, 15: 1376687. https://doi.org/10.3389/fpls.2024.1376687 Kamenchuk V., Rumiantsev B., Dzhatdoeva S., Sadykhov E., and Kochkarov A., 2023, Analysis of cross-influence of microclimate, lighting, and soil parameters in the vertical farm, Agronomy, 13(8): 2174. https://doi.org/10.3390/agronomy13082174 Kang H., Tomimatsu H., Zhu T., Ma Y., Wang X., Zhang Y., and Tang Y., 2022, Contributions of species shade tolerance and individual light environment to photosynthetic induction in tropical tree seedlings, Tree Physiology, 42(10): 1975-1987. https://doi.org/10.1093/treephys/tpac056 Kara F., 2022, Effects of light transmittance on growth and biomass of understory seedlings in mixed pine-beech forests, European Journal of Forest Research, 141: 1189-1200. https://doi.org/10.1007/s10342-022-01501-4 Kaushal R., Kumar A., Mandal D., Tomar J., Jinger D., Islam S., Panwar P., Jayaprakash J., Uthappa A., Singhal V., Barh A., and Madhu M., 2024, Mulberry based agroforestry system and canopy management practices to combat soil erosion and enhancing carbon sequestration in degraded lands of Himalayan foothills, Environmental and Sustainability Indicators, 24: 100467. https://doi.org/10.1016/j.indic.2024.100467 Laub M., Pataczek L., Feuerbacher A., Zikeli S., and Högy P., 2021, Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis, Agronomy for Sustainable Development, 42: 51. https://doi.org/10.1007/s13593-022-00783-7 Li M., Wei Y., Yin Y., Zhu W., Bai X., and Zhou Y., 2023, Characteristics of soil physicochemical properties and microbial community of mulberry (Morus alba L.) and alfalfa (Medicago sativa L.) intercropping system in northwest Liaoning, Microorganisms, 11(1): 114. https://doi.org/10.3390/microorganisms11010114 Liang X., Gao Z., Shen S., Paul M., Zhang L., Zhao X., Lin S., Wu G., Chen X., and Zhou S., 2020, Differential ear growth of two maize varieties to shading in the field environment: effects on whole plant carbon allocation and sugar starvation response, Journal of Plant Physiology, 251: 153194. https://doi.org/10.1016/j.jplph.2020.153194 Lu L., Tang Y., Xie J., and Yuan Y., 2009, The role of marginal agricultural land-based mulberry planting in biomass energy production, Renewable Energy, 34: 1789-1794. https://doi.org/10.1016/j.renene.2008.12.017 Magadum S., Sharma P., Bala M., Kouser R., Sharma A., Deskit L., Aziz F., Lal J., and Singh S., 2020, Evaluation of different mulberry plantation systems for leaf yield and yield contributing characters, International Journal of Current Microbiology and Applied Sciences, 9: 3222-3229. https://doi.org/10.20546/ijcmas.2020.912.383 Mahesh R., Anil P., Debashish C., and Sivaprasad V., 2020, Improved mulberry productivity and resource efficiency through low-cost drip fertigation, Archives of Agronomy and Soil Science, 68: 749-763. https://doi.org/10.1080/03650340.2020.1852552
RkJQdWJsaXNoZXIy MjQ4ODYzNA==