PGT_2025v16n4

Plant Gene and Trait 2025, Vol.16, No.4, 152-161 http://genbreedpublisher.com/index.php/pgt 160 Jiang Y., Lin X., Khan M., Jiang W., Xu Y., Li Z., and Lin W., 2023, Tea pruning for the umbrella-shaped canopy can alleviate rhizosphere soil degradation and improve the ecosystem functioning of tea orchards, CATENA, 222: 106885. https://doi.org/10.1016/j.catena.2022.106885 Lagoshina A., Pchihachev E., Chernjavskaja I., Aleksandrova A., and Belous O., 2021a, Influence of fertilizers on the productivity of tea plants in the conditions of the north-west Caucasus, IOP Conference Series: Earth and Environmental Science, 935: 012006. https://doi.org/10.1088/1755-1315/935/1/012006 Lagoshina A., Pchikhachev E., and Belous O., 2021b, Influence of innovative forms of fertilizers on the adaptive potential of tea plants, Horticulture and Viticulture, 3: 23-28. https://doi.org/10.31676/0235-2591-2021-3-23-35 Liu Z., Wang Q., Ma Y., and Zhao M., 2025, Influence on soil ecology, tea yield, and quality of tea plant organic cultivation: a mini-review, Frontiers in Agronomy, 7: 1557723. https://doi.org/10.3389/fagro.2025.1557723 Nalina M., Saroja S., Chakravarthi M., Rajkumar R., Radhakrishnan B., and Chandrashekara K., 2021, Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition, Acta Physiologiae Plantarum, 43: 10. https://doi.org/10.1007/s11738-020-03174-1 Peguero-Pina J., Vilagrosa A., Alonso-Forn D., Ferrio J., Sancho-Knapik D., and Gil-Pelegrín E., 2020, Living in drylands: functional adaptations of trees and shrubs to cope with high temperatures and water scarcity, Forests, 11(10): 1028. https://doi.org/10.3390/f11101028 Rahimi M., Kordrostami M., and Mortezavi M., 2018, Evaluation of tea (Camellia sinensis L.) biochemical traits in normal and drought stress conditions to identify drought tolerant clones, Physiology and Molecular Biology of Plants, 25: 59-69. https://doi.org/10.1007/s12298-018-0564-x Ran W., Li Q., Hu X., Zhang D., Yu Z., Chen Y., Wang M., and Ni D., 2023, Comprehensive analysis of environmental factors on the quality of tea (Camellia sinensis var. sinensis) fresh leaves, Scientia Horticulturae, 319: 112177. https://doi.org/10.1016/j.scienta.2023.112177 Ren T., Zheng P., Zhang K., Liao J., Xiong F., Shen Q., Ma Y., Fang W., and Zhu X., 2021, Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions, Plant Physiology and Biochemistry, 159: 363-371. https://doi.org/10.1016/j.plaphy.2021.01.003 Sano T., Horie H., Matsunaga A., and Hirono Y., 2018, Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation, Journal of the Science of Food and Agriculture, 98(15): 5666-5676. https://doi.org/10.1002/jsfa.9112 Seth R., Maritim T., Parmar R., and Sharma R., 2021, Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze), Horticulture Research, 8: 99. https://doi.org/10.1038/s41438-021-00532-z Shen J., Zhang D., Zhou L., Zhang X., Liao J., Duan Y., Wen B., Ma Y., Wang Y., Fang W., and Zhu X., 2019, Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. ‘Suchazao’ exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways, Tree Physiology, 39(9): 1583-1599. https://doi.org/10.1093/treephys/tpz059 Tang S., Pan W., Tang R., Ma Q., Zhou J., Zheng N., Wang J., Sun T., and Wu L., 2022, Effects of balanced and unbalanced fertilisation on tea quality, yield, and soil bacterial community, Applied Soil Ecology, 175: 104442. https://doi.org/10.1016/j.apsoil.2022.104442 Trueba S., Pan R., Scoffoni C., John G., Davis S., and Sack L., 2019, Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry, The New Phytologist, 223(1): 134-149. https://doi.org/10.1111/nph.15779 Wen B., Li R., Zhao X., Ren S., Chang Y., Zhang K., Wang S., Guo G., and Zhu X., 2021, A quadratic regression model to quantify plantation soil factors that affect tea quality, Agriculture, 11(12): 1225. https://doi.org/10.3390/agriculture11121225 Yamashita H., Tanaka Y., Umetsu K., Morita S., Ono Y., Suzuki T., Takemoto T., Morita A., and Ikka T., 2020, Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation, Frontiers in Plant Science, 11: 556476. https://doi.org/10.3389/fpls.2020.556476 Yang Q., Guo Y., Li J., Wang L., Wang H., Liu G., Fang W., Qiang S., Strasser R., and Chen S., 2023, Natural plant inducer 2-amino-3-methylhexanoic acid protects physiological activity against high-temperature damage to tea (Camellia sinensis), Scientia Horticulturae, 312: 111836. https://doi.org/10.1016/j.scienta.2023.111836 Ye Z., Zhang L., Liao K., Zhu Q., Lai X., and Guo C., 2024, Interactive effects of environmental factors and fertilization practices on soil nitrate leaching and tea productivity in Tianmu Lake Basin, China, Agriculture, Ecosystems and Environment, 367: 108988. https://doi.org/10.1016/j.agee.2024.108988 Zhang Q., Bi G., Li T., Wang Q., Xing Z., LeCompte J., and Harkess R., 2022, Color shade nets affect plant growth and seasonal leaf quality of Camellia sinensis grown in Mississippi, the United States, Frontiers in Nutrition, 9: 786421. https://doi.org/10.3389/fnut.2022.786421

RkJQdWJsaXNoZXIy MjQ4ODYzNA==