PGT_2025v16n4

Plant Gene and Trait 2025, Vol.16, No.4, 142-151 http://genbreedpublisher.com/index.php/pgt 149 References Alqardaeai T., Alharbi A., Alenazi M., Alomran A., Alghamdi A., Obadi A., Elfeky A., and Osman M., 2025, Effectiveness of grafting in enhancing salinity tolerance of tomato (Solanum lycopersicum L.) using novel and commercial rootstocks in soilless systems, Sustainability, 17(10): 4333. https://doi.org/10.3390/su17104333 Alqardaeai T., Alharbi A., Alenazi M., Alomran A., Elfeky A., Osman M., Obadi A., Aldubai A., Ortiz N., Melino V., Tester M., and Pailles Y., 2024, Effect of tomato grafting onto novel and commercial rootstocks on improved salinity tolerance and enhanced growth, physiology, and yield in soilless culture, Agronomy, 14(7): 1526. https://doi.org/10.3390/agronomy14071526 Anthony B., and Musacchi S., 2021, Dwarfing mechanisms and rootstock-scion relationships in apple, Italus Hortus, 28(2): 22-36. https://doi.org/10.26353/j.itahort/2021.2.2236 Aydin A., 2024, Effects of grafting with wild tomato (Solanum pimpinellifolium and Solanum habrochaites) rootstocks on growth and leaf mineral accumulation in salt stress, Horticulture, Environment, and Biotechnology, 65: 785-801. https://doi.org/10.1007/s13580-024-00607-5 Balliu A., Babaj I., and Sallaku G., 2024, Root morphology parameters and nutrient acquisition capabilities of grafted tomato plants in root-restricted conditions are subject to salinity and rootstock characteristics, International Journal of Vegetable Science, 30(5): 503-526. https://doi.org/10.1080/19315260.2024.2383847 Bayindir S., and Kandemir D., 2022, Root system architecture of interspecific rootstocks and its relationship with yield components in grafted tomato, Gesunde Pflanzen, 75: 329-341. https://doi.org/10.1007/s10343-022-00704-4 Biasuz C., and Kalcsits L., 2022, Apple rootstocks affect functional leaf traits with consequential effects on carbon isotope composition and vegetative vigour, AoB Plants, 14(4): plac020. https://doi.org/10.1093/aobpla/plac020 Biasuz E., and Kalcsits L., 2023, Rootstock effects on leaf function and isotope composition in apple occurred on both scion grafted and ungrafted rootstocks under hydroponic conditions, Frontiers in Plant Science, 14: 1274195. https://doi.org/10.3389/fpls.2023.1274195 Davis M., Stone A., Selman L., Merscher P., and Garrett A., 2024, Grafting onto tomato rootstocks improves outcomes for dry-farmed tomato, HortTechnology, 34(4): 313-321. https://doi.org/10.21273/horttech05412-24 De Moura Guerra A., and Da Silva Rodrigues Í., 2024, Compatibility of wild rootstocks in the production of cherry tomato seedlings, Comunicata Scientiae, 15: e3937. https://doi.org/10.14295/cs.v15.3937 Djidonou D., Leskovar D., Joshi M., Jifon J., Avila C., Masabni J., Wallace R., and Crosby K., 2020, Stability of yield and its components in grafted tomato tested across multiple environments in Texas, Scientific Reports, 10: 13535. https://doi.org/10.1038/s41598-020-70548-3 Fu S., Chen J., Wu X., Gao H., and LüG., 2022, Comprehensive evaluation of low temperature and salt tolerance in grafted and rootstock seedlings combined with yield and quality of grafted tomato, Horticulturae, 8(7): 595. https://doi.org/10.3390/horticulturae8070595 Gomes D., Machado T., Maciel G., Siquieroli A., De Oliveira C., De Sousa L., and Da Silva H., 2022, Dwarf tomato plants allow for managing agronomic yield gains with fruit quality and pest resistance through backcrossing, Agronomy, 12(12): 3087. https://doi.org/10.3390/agronomy12123087 Gong T., Brecht J., Hutton S., Koch K., and Zhao X., 2022a, Tomato fruit quality is more strongly affected by scion type and planting season than by rootstock type, Frontiers in Plant Science, 13: 948556. https://doi.org/10.3389/fpls.2022.948556 Gong T., Brecht J., Koch K., Hutton S., and Zhao X., 2022b, A systematic assessment of how rootstock growth characteristics impact grafted tomato plant biomass, resource partitioning, yield, and fruit mineral composition, Frontiers in Plant Science, 13: 948656. https://doi.org/10.3389/fpls.2022.948656 Gong T., Zhang X., Brecht J., Black Z., and Zhao X., 2022c, Grape tomato growth, yield, and fruit mineral content as affected by rootstocks in a high tunnel organic production system, HortScience, 57(10): 1267-1277. https://doi.org/10.21273/hortsci16553-22 Gu Q., Wei Q., Hu Y., Chen M., Chen Z., Zheng S., Ma Q., and Luo Z., 2023, Physiological and full-length transcriptome analyses reveal the dwarfing regulation in Trifoliate orange (Poncirus trifoliata L.), Plants, 12(2): 271. https://doi.org/10.3390/plants12020271 Hashem A., Bayoumi Y., El-Zawily A., Tester M., and Rakha M., 2024, Interspecific hybrid rootstocks improve productivity of tomato grown under high-temperature stress, HortScience, 59(1): 129-137. https://doi.org/10.21273/hortsci17482-23 Hayat F., Iqbal S., Coulibaly D., Razzaq M., Nawaz M., Jiang W., Shi T., and Gao Z., 2021, An insight into dwarfing mechanism: contribution of scion-rootstock interactions toward fruit crop improvement, Fruit Research, 1: 3. https://doi.org/10.48130/frures-2021-0003

RkJQdWJsaXNoZXIy MjQ4ODYzNA==