PGT_2025v16n3

Plant Gene and Trait 2025, Vol.16, No.3, 92-103 http://genbreedpublisher.com/index.php/pgt 102 Huang J., Zhao X., and Chory J., 2019, The Arabidopsis transcriptome responds specifically and dynamically to high light stress, Cell Reports, 29: 4186-4199. https://doi.org/10.1016/j.celrep.2019.11.051 Jackson H., Taunt H., Mordaka P., Smith A., and Purton S., 2021, The algal chloroplast as a testbed for synthetic biology designs aimed at radically rewiring plant metabolism, Frontiers in Plant Science, 12: 708370. https://doi.org/10.3389/fpls.2021.708370 Jarad M., Antoniou-Kourounioti R., Hepworth J., and Qüesta J., 2020, Unique and contrasting effects of light and temperature cues on plant transcriptional programs, Transcription, 11: 134-159. https://doi.org/10.1080/21541264.2020.1820299 Johnson M., Góral T., Duffy C., Brain A., Mullineaux C., and Ruban A., 2011, Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts, Plant Cell, 23: 1468-1479. https://doi.org/10.1105/tpc.110.081646 Kassaw T., Donayre-Torres A., Antunes M., Morey K., and Medford J., 2018, Engineering synthetic regulatory circuits in plants, Plant Science, 273: 13-22. https://doi.org/10.1016/j.plantsci.2018.04.005 Kumar A., Pathak R., Gupta S., Gaur V., and Pandey D., 2015, Systems biology for smart crops and agricultural innovation: filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability, Omics, 19(10): 581-601. https://doi.org/10.1089/omi.2015.0106 Li H., Wang Y., Ye M., Li S., Li D., Ren H., Wang M., Du L., Li H., Veglia G., Gao J., and Weng Y., 2020, Dynamical and allosteric regulation of photoprotection in light harvesting complex II, Science China Chemistry, 63: 1121-1133. https://doi.org/10.1007/s11426-020-9771-2 Li Z., Zhu A., Song Q., Chen H., Harmon F., and Chen Z., 2020, Temporal regulation of the metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis, Plant Cell, 32: 3706-3722. https://doi.org/10.1105/tpc.20.00320 Liao C., Blanchard A., and Lu T., 2017, An integrative circuit-host modelling framework for predicting synthetic gene network behaviours, Nature Microbiology, 2: 1658-1666. https://doi.org/10.1038/s41564-017-0022-5 Liu J., Lu Y., Hua W., and Last R., 2019, A new light on photosystem II maintenance in oxygenic photosynthesis, Frontiers in Plant Science, 10: 975. https://doi.org/10.3389/fpls.2019.00975 Lokstein H., Renger G., and Götze J., 2021, Photosynthetic light-harvesting (antenna) complexes- structures and functions, Molecules, 26(11): 3378. https://doi.org/10.3390/molecules26113378 Mascoli V., Liguori N., Xu P., Roy L., Stokkum I., and Croce R., 2019, Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble, Chem, 5(11): 2900-2912. https://doi.org/10.1016/j.chempr.2019.08.002 McCormick A., Watt D., and Cramer M., 2008, Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane, Annals of Botany, 101(1): 89-102. https://doi.org/10.1093/aob/mcm258 Meloni M., Gurrieri L., Fermani S., Velie L., Sparla F., Crozet P., Henri J., and Zaffagnini M., 2023, Ribulose-1,5-bisphosphate regeneration in the Calvin-Benson-Bassham cycle: focus on the last three enzymatic steps that allow the formation of Rubisco substrate, Frontiers in Plant Science, 14: 1130430. https://doi.org/10.3389/fpls.2023.1130430 Moreno-Villena J., Dunning L., Osborne C., and Christin P., 2017, Highly expressed genes are preferentially co-opted for C4 photosynthesis, Molecular Biology and Evolution, 35: 94-106. https://doi.org/10.1093/molbev/msx269 Morselli M., and Dieci G., 2022, Epigenetic regulation of human non-coding RNA gene transcription, Biochemical Society Transactions, 50(2): 723-736. https://doi.org/10.1042/BST20210860 Müh F., and Zouni A., 2020, Structural basis of light‐harvesting in the photosystem II core complex, Protein Science, 29: 1090-1119. https://doi.org/10.1002/pro.3841 Perduns R., Horst-Niessen I., and Peterhansel C., 2015, Photosynthetic genes and genes associated with the C4 trait in maize are characterized by a unique class of highly regulated histone acetylation peaks on upstream promoters, Plant Physiology, 168: 1378-1388. https://doi.org/10.1104/pp.15.00934 Rasmusson A., and Escobar M., 2007, Light and diurnal regulation of plant respiratory gene expression, Physiologia Plantarum, 129: 57-67. https://doi.org/10.1111/J.1399-3054.2006.00797.X Reyna-Llorens I., Burgess S., Reeves G., Singh P., Stevenson S., Williams B., Stanley S., and Hibberd J., 2018, Ancient duons may underpin spatial patterning of gene expression in C4 leaves, Proceedings of the National Academy of Sciences, 115: 1931-1936. https://doi.org/10.1073/pnas.1720576115 Saibo N., Lourenço T., and Oliveira M., 2009, Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses, Annals of Botany, 103(4): 609-623. https://doi.org/10.1093/aob/mcn227

RkJQdWJsaXNoZXIy MjQ4ODYzNA==