Plant Gene and Trait 2025, Vol.16, No.1, 32-38 http://genbreedpublisher.com/index.php/pgt 38 Kumar S., Seepaul R., Small I.M., George S., O’Brien G.K., Marois J.J., and Wright D.L., 2021, Interactive effects of nitrogen and sulfur nutrition on growth, development, and physiology of Brassica carinata A. Braun and Brassica napus L., Sustainability, 13(13): 7355. https://doi.org/10.3390/su13137355 Li B.J., Zheng B.Q., Wang J.Y., Tsai W.C., Lu H.C., Zou L.H., Wan X., Zhang D.Y., Qiao H.J., Liu Z.J., and Wang Y., 2020, New insight into the molecular mechanism of colour differentiation among floral segments in orchids, Communications Biology, 3: 89. https://doi.org/10.1038/s42003-020-0821-8 Li H., Yu K., Amoo O., Yu Y., Guo M., Deng S., Li M., Hu L., Wang J., Fan C., and Zhou Y., 2022, Site-directed mutagenesis of the carotenoid isomerase gene BnaCRTISOalters the color of petals and leaves in Brassica napus L., Frontiers in Plant Science, 13: 801456. https://doi.org/10.3389/fpls.2022.801456 Li S., Li X., Wang X., Chang T., Peng Z., Guan C., and Guan M., 2023, Flavonoid synthesis-related genes determine the color of flower petals in Brassica napus L., International Journal of Molecular Sciences, 24(7): 6472. https://doi.org/10.3390/ijms24076472 Li W., Liu Y., Wang W., Liu J., Yao M., Guan M., Guan C., and He X., 2021, Phytochrome-interacting factor (PIF) in rapeseed (Brassica napus L.): genome-wide identification, evolution and expression analyses during abiotic stress, light quality and vernalization, International Journal of Biological Macromolecules, 180: 14-27. https://doi.org/10.1016/j.ijbiomac.2021.03.055 Liu Y., Ye S., Yuan G., Ma X., Heng S., Yi B., Ma C., Shen J., Tu J., Fu T., and Wen J., 2020, Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers, The Plant Journal, 104(4): 932-949. https://doi.org/10.1111/tpj.14970 Luo Y., Teng S., Yin H., Zhang S., Tuo X., and Tran L.S.P., 2021, Transcriptome analysis reveals roles of anthocyanin-and jasmonic acid-biosynthetic pathways in rapeseed in response to high light stress, International Journal of Molecular Sciences, 22(23): 13027. https://doi.org/10.3390/ijms222313027 Raboanatahiry N., Li H., Yu L., and Li M., 2021, Rapeseed (Brassica napus): processing, utilization, and genetic improvement, Agronomy, 11(9): 1776. https://doi.org/10.3390/agronomy11091776 Sannikova V.Y., 2020, Genetic engineering as a way to obtain ornamental plants with a changed flower color, Plant Biotechnology and Breeding, 3(1): 40-45. https://doi.org/10.30901/2658-6266-2020-1-o1 Wu J., Mohamed D., Dowhanik S., Petrella R., Gregis V., Li J., Wu L., and Gazzarrini S., 2020, Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth, The Plant Cell, 32(6): 1886-1904. https://doi.org/10.1105/tpc.19.00764 Xiao M., Wang H., Li X., Mason A.S., and Fu D., 2021, Rapeseed as an ornamental, Horticulturae, 8(1): 27. https://doi.org/10.3390/horticulturae8010027 Yang H., Chang F., You C., Cui J., Zhu G., Wang L., Zheng Y., Qi J., and Ma H., 2015, Whole‐genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis, The Plant Journal, 81(2): 268-281. https://doi.org/10.1111/tpj.12726 Yang S., Liu H., Zhao Y., Su H., Wei X., Wang Z., Zhao X., Zhang X.W., and Yuan Y., 2022, Map-based cloning and characterization of Br-dyp1, a gene conferring dark yellow petal color trait in Chinese cabbage (Brassica rapa L. ssp. pekinensis), Frontiers in Plant Science, 13: 841328. https://doi.org/10.3389/fpls.2022.841328 Ye S., Hua S., Ma T., Ma X., Chen Y., Wu L., Zhao L., Yi B., Ma C., Tu J., Shen J., Fu T., and Wen J., 2022, Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers, Journal of Experimental Botany, 73(19): 6630-6645. https://doi.org/10.1093/jxb/erac312 Yin N.W., Wang S.X., Jia L.D., Zhu M.C., Yang J., Zhou B.J., Yin J.M., Lu K., Wang R., Li J.N., and Qu C.M., 2019, Identification and characterization of major constituents in different-colored rapeseed petals by UPLC–HESI-MS/MS, Journal of Agricultural and Food Chemistry, 67(40): 11053-11065. https://doi.org/10.1021/acs.jafc.9b05046 Zeng H., Zheng T., Li Y., Chen Q., Xue Y., Tang Q., Xu H., and Chen M., 2023, Characterization variation of the differential coloring substances in rapeseed petals with different colors using UPLC-HESI-MS/MS, Molecules, 28(15): 5670. https://doi.org/10.3390/molecules28155670 Zhang N., Chen L., Ma S., Wang R., He Q., Tian M., and Zhang L., 2020, Fine mapping and candidate gene analysis of the white flower gene Brwf in Chinese cabbage (Brassica rapa L.), Scientific Reports, 10: 6080. https://doi.org/10.1038/s41598-020-63165-7
RkJQdWJsaXNoZXIy MjQ4ODYzNA==