Plant Gene and Trait 2025, Vol.16, No.1, 15-22 http://genbreedpublisher.com/index.php/pgt 21 Liu J., Gao S., Xu Y., Wang M., Ngiam J., Wen N., Yi J., Weng X., Jia L., and Salojärvi J., 2022, Genetic diversity analysis of Sapindus in China and extraction of a core germplasm collection using EST-SSR markers, Frontiers in Plant Science, 13: 857993. https://doi.org/10.3389/fpls.2022.857993 Liu J., Liu S., Xu Y., Sun C., Chen Z., Wang X., Wang L., Gao S., Zhao G., He Q., Weng X., and Jia L., 2021, Screening of Sapindus germplasm resources in China based on agro-morphological traits, Journal of Forestry Research, 33: 203-216. https://doi.org/10.1007/S11676-021-01350-8 Liu N., 2024, Unveiling the mechanism of proprioception in primates: the application of task-driven neural network models, Bioscience Method, 15(1): 21-27. https://doi.org/10.5376/bm.2024.15.0003 Ma Z., Chang Y., Brito L., Li Y., Yang T., Wang Y., Yang N., and Yang N., 2023, Multi-trait meta-analyses identify potential candidate genes for growth-related traits in Holstein heifers, Journal of Dairy Science, 106(12): 9055-9070. https://doi.org/10.3168/jds.2023-23462 Meuwissen T., Van Den Berg I., and Goddard M., 2021, On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL, Genetics, Selection, Evolution, 53: 19. https://doi.org/10.1186/s12711-021-00607-4 Neale D., and Savolainen O., 2004, Association genetics of complex traits in conifers, Trends in Plant Science, 9(7): 325-330. https://doi.org/10.1016/j.tplants.2004.05.006 Ros-Freixedes R., Johnsson M., Whalen A., Chen C., Valente B., Herring W., Gorjanc G., and Hickey J., 2022, Genomic prediction with whole-genome sequence data in intensely selected pig lines, Genetics, Selection, Evolution, 54: 65. https://doi.org/10.1186/s12711-022-00756-0 Schulman A., 2007, Molecular markers to assess genetic diversity, Euphytica, 158: 313-321. https://doi.org/10.1007/s10681-006-9282-5 Silva L., Peixoto M., Peixoto L., Romero J., and Bhering L., 2021, Multi-trait genomic selection indexes applied to identification of superior genotypes, Bragantia, 80: e3621. https://doi.org/10.1590/1678-4499.20200381 Singh R., and Prasad M., 2021, Big genomic data analysis leads to more accurate trait prediction in hybrid breeding for yield enhancement in crop plants, Plant Cell Reports, 40: 2009-2011. https://doi.org/10.1007/s00299-021-02761-x Su J., Jiang J., Zhang F., Liu Y., Ding L., Chen S., and Chen F., 2019, Current achievements and future prospects in the genetic breeding of chrysanthemum: a review, Horticulture Research, 6: 109. https://doi.org/10.1038/s41438-019-0193-8 Sun C., Jia L., Xi B., Liu J., Wang L., and Weng X., 2018a, Genetic diversity and association analyses of fruit traits with microsatellite ISSRs in Sapindus, Journal of Forestry Research, 30: 193-203. https://doi.org/10.1007/s11676-017-0580-7 Sun C., Wang L., Liu J., Zhao G., Gao S., Xi B., Duan J., Weng X., and Jia L., 2018b, Genetic structure and biogeographic divergence among Sapindus species: an inter-simple sequence repeat-based study of germplasms in China, Industrial Crops and Products, 118: 1-10. https://doi.org/10.1016/j.indcrop.2018.03.029 Tempelman R., 2015, Statistical and computational challenges in whole genome prediction and genome-wide association analyses for plant and animal breeding, Journal of Agricultural, Biological, and Environmental Statistics, 20: 442-466. https://doi.org/10.1007/s13253-015-0225-2 Tester M., and Langridge P., 2010, Breeding technologies to increase crop production in a changing world, Science, 327: 818-822. https://doi.org/10.1126/science.1183700 Thavamanikumar S., Southerton S., Bossinger G., and Thumma B., 2013, Dissection of complex traits in forest trees - opportunities for marker-assisted selection, Tree Genetics and Genomes, 9: 627-639. https://doi.org/10.1007/s11295-013-0594-z Thomson M., Ismail A., McCouch S., and Mackill D., 2009, Marker assisted breeding, In: Pareek A., Sopory S., and Bohnert H. (eds.), Abiotic stress adaptation in plants, Springer, Dordrecht, The Netherlands, pp.451-469. https://doi.org/10.1007/978-90-481-3112-9_20 Wang P., Zhou Q., and Li J., 2021, Advances in genomic selection and marker-assisted breeding: implications for Sapindus improvement, Frontiers in Plant Science, 12: 678123. https://doi.org/10.3389/fpls.2021.678123 Xu Y., and Crouch J., 2008, Marker-assisted selection in plant breeding: from publications to practice, Crop Science, 48: 391-407. https://doi.org/10.2135/cropsci2007.04.0191 Xue T., Chen D., Zhang T., Chen Y., Fan H., Huang Y., Zhong Q., and Li B., 2022, Chromosome-scale assembly and population diversity analyses provide insights into the evolution of Sapindus mukorossi, Horticulture Research, 9: uhac012. https://doi.org/10.1093/hr/uhac012 Yang H., Li C., Lam H., Clements J., Yan G., and Zhao S., 2015, Sequencing consolidates molecular markers with plant breeding practice, Theoretical and Applied Genetics, 128: 779-795. https://doi.org/10.1007/s00122-015-2499-8
RkJQdWJsaXNoZXIy MjQ4ODYzNA==