Plant Gene and Trait 2025, Vol.16, No.1, 1-14 http://genbreedpublisher.com/index.php/pgt 13 Feng L., Wang J., Mao M., Yang W., Adje M., Xue Y., Zhou X., Zhang H., Luo J., Tang R., Tan L., Lin D., Zhang X., Zang Y., He Y., Chen C., Luan A., Lin W., Xu W., Li X., Sun L., Jiang F., and Ma J., 2022, The highly continuous reference genome of a leaf-chimeric red pineapple (Ananas comosus var. bracteatus f. tricolor) provides insights into elaboration of leaf color, G3: Genes, Genomes, Genetics, 12(2): jkab452. https://doi.org/10.1093/g3journal/jkab452 Huang Y., Chen F., Chai M., Xi X., Zhu W., Qi J., Liu K., Ma S., Su H., Tian Y., Zhang H., Qin Y., and Cai H., 2022, Ectopic overexpression of pineapple transcription factor AcWRKY31 reduces drought and salt tolerance in rice andArabidopsis, International Journal of Molecular Sciences, 23(11): 6269. https://doi.org/10.3390/ijms23116269 Ismail S., Ghani N., Razak S., Abidin R., Yusof M., Zubir M., and Zainol R., 2020, Genetic diversity of pineapple (Ananas comosus) germplasm in Malaysia using simple sequence repeat (SSR) markers, Tropical Life Sciences Research, 31: 15-27. https://doi.org/10.21315/tlsr2020.31.3.2 Kinley R., Dhimal C.M., and Rai G.S., 2022, Morphological and physico-chemical characteristics of three local pineapple [Ananas comosus (L.) Merr.] cultivars grown under subtropical region of Bhutan, Journal of Horticulture and Postharvest Research, 5(2): 141-154. Li D., Jing M., Dai X., Chen Z., Ma C., and Chen J., 2022, Current status of pineapple breeding, industrial development, and genetics in China, Euphytica, 218: 85. https://doi.org/10.1007/s10681-022-03030-y Lin J., and Ming R., 2018, Sequencing and assembly of the pineapple genome, In: Ming R. (ed.), Genetics and genomics of pineapple, plant genetics and genomics: crops and models, Springer, Cham, Switzerland, pp.97-107. https://doi.org/10.1007/978-3-030-00614-3_8 Macioszek V., Ciereszko I., Kononowicz A., Hnin M., Luo T., Priyadarshani S., Zhou Q., Mohammadi M., Cheng H., Aslam M., Liu C., Chai G., Huang D., Liu Y., Cai H., Wang X., Qin Y., and Wang L., 2024, Overexpression of AcWRKY31 increases sensitivity to salt and drought and improves tolerance to mealybugs in pineapple, Plants, 13(13): 1850. https://doi.org/10.3390/plants13131850 Maia S.T., Costa T.V.D., and Costa F.S.D., 2023, Technological levels in pineapple (Ananas comosus) production in family agroecosystems in Novo Remanso (Itacoatiara/Amazonas), Revista de Economia e Sociologia Rural, 62: e269860. Migicovsky Z., and Myles S., 2017, Exploiting wild relatives for genomics-assisted breeding of perennial crops, Frontiers in Plant Science, 8: 460. https://doi.org/10.3389/fpls.2017.00460 Nashima K., Shirasawa K., Isobe S., Urasaki N., Tarora K., Irei A., Shoda M., Takeuchi M., Omine Y., Nishiba Y., Sugawara T., Kunihisa M., Nishitani C., and Yamamoto T., 2022, Gene prediction for leaf margin phenotype and fruit flesh color in pineapple (Ananas comosus) using haplotype‐resolved genome sequencing, The Plant Journal, 110(3): 720-734. https://doi.org/10.1111/tpj.15699 Paull R.E., Wiseman B., and Uruu G., 2022, Pineapple field establishment using slips, HortScience, 57(12): 1540-1544. https://doi.org/10.21273/HORTSCI16877-22 Qiao L., Jiang P., Tang Y., Pan L., Ji H., Zhou W., Zhu H., Sui J., Jiang D., and Wang J., 2021, Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants, Electronic Journal of Biotechnology, 49: 42-49. https://doi.org/10.1016/j.ejbt.2020.10.006 Rattanathawornkiti K., Kanchanaketu T., Suwanagul A., and Hongtrakul V., 2016, Genetic relationship assessment of pineapple germplasm in Thailand revealed by AFLP markers, Genomics and Genetics, 9: 56-65. Scherer R., De Freitas Fraga H., Klabunde G., Silva D., and Guerra M., 2015, Global DNA methylation levels during the development of nodule cluster cultures and assessment of genetic fidelity of in vitro-regenerated pineapple plants (Ananas comosus var. comosus), Journal of Plant Growth Regulation, 34: 677-683. https://doi.org/10.1007/s00344-015-9493-x Shaw P.D., Weise S., Obreza M., Raubach S., McCouch S., Kilian B., and Werner P., 2023, Database solutions for genebanks and germplasm collections, In: Ghamkhar K., Williams W.M., and Brown A.H.D. (eds.), Plant genetic resources for the 21st century, Apple Academic Press, New York, USA, pp. 285-309. Souza C., De Oliveira Barbosa A., Ferreira F., Souza F., De Souza Rocha L., De Souza E., and De Oliveira S., 2019, Diversity of microorganisms associated to Ananas spp. from natural environment, cultivated and ex situ conservation areas, Scientia Horticulturae, 243: 544-551. https://doi.org/10.1016/j.scienta.2018.09.015 Souza F., Kaya E., De Jesus Vieira L., De Souza E., De Oliveira Amorim V., Skogerboe D., Matsumoto T., Alves A., Da Silva Ledo C., and Jenderek M., 2015, Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes, Plant Cell, Tissue and Organ Culture, 124: 351-360. https://doi.org/10.1007/s11240-015-0899-8 Valentino H., Damayanti T., Nurulita S., Kurniawati F., Sartiami D., Harahap I., Mubin N., Basuki M., Ratdiana, and Aziz R., 2023, Detection and identification of viruses associated to mealybug wilt pineapple in Blitar, East Java, Indonesia, IOP Conference Series: Earth and Environmental Science, 1208: 012013. https://doi.org/10.1088/1755-1315/1208/1/012013 Villalobos-Olivera A., Entensa Y., Martínez J., Escalante D., Quintana N., Souza F., Martínez-Montero M., Hajari E., and Feijoo J., 2021, Storage of pineapple shoot tips in liquid nitrogen for three years does not modify field performance of recovered plants, Acta Physiologiae Plantarum, 44: 65. https://doi.org/10.1007/s11738-022-03406-6
RkJQdWJsaXNoZXIy MjQ4ODYzNA==