Plant Gene and Trait 2024, Vol.15, No.6, 305-313 http://genbreedpublisher.com/index.php/pgt 312 Hong Z.M., and Huang W.Z., 2024, Agronomic traits of cassava and their genetic bases: a focus on yield and quality improvements, Tree Genetics and Molecular Breeding, 14(1): 22-31. https://doi.org/10.5376/tgmb.2024.14.0004 Huang C., Liao J., Huang W., and Qin N., 2022, Salicylic acid protects sweet potato seedlings from drought stress by mediating abscisic acid-related gene expression and enhancing the antioxidant defense system, International Journal of Molecular Sciences, 23(23): 14819. https://doi.org/10.3390/ijms232314819 PMid:36499145 PMCid:PMC9736078 Jha G., 2014, Increasing productivity of sweet potato Ipomoea batatas (L) Lam through clonal selection of ideal genotypes from open-pollinated seedling population, International Journal of Farm Sciences, 2: 17-27. Zhang K., Luo X.M., Wang J.C., Tang D.B., Wu Z.D., Ye S., and Wang L., 2013, Genetic diversity and correlation analysis of starch yield-related traits in sweet potato, Chinese Journal of Eco-Agriculture, 21(3): 365-374. https://doi.org/10.3724/SP.J.1011.2013.00365 Lamaro G., Tsehaye Y., Girma A., Vannini A., Fedeli R., and Loppi S., 2023, Evaluation of yield and nutraceutical traits of orange-fleshed sweet potato storage roots in two agro-climatic zones of northern Ethiopia, Plants, 12(6): 1319. https://doi.org/10.3390/plants12061319 PMid:36987006 PMCid:PMC10052921 Laurie S., Bairu M., and Laurie R., 2022, Analysis of the nutritional composition and drought tolerance traits of sweet potato: selection criteria for breeding lines, Plants, 11(14): 1804. https://doi.org/10.3390/plants11141804 PMid:35890438 PMCid:PMC9318324 Lebot V., Leo P., and Legendre L., 2021, Phenotyping chlorogenic acids and coumarins in sweet potato [Ipomoea batatas (L.) Lam.] breeding lines for enhanced tolerance to periderm pathogens, Euphytica, 217: 59. https://doi.org/10.1007/s10681-021-02808-w Liu E., Xu L., Luo Z., Li Z., Zhou G., Gao H., Fang F., Tang J., Zhao Y., Zhou Z., and Jin P., 2023, Transcriptomic analysis reveals mechanisms for the different drought tolerance of sweet potatoes, Frontiers in Plant Science, 14: 1136709. https://doi.org/10.3389/fpls.2023.1136709 PMid:37008495 PMCid:PMC10060965 Maquia I., Muocha I., Naico A., Martins N., Gouveia M., Andrade I., Goulao L., and Ribeiro A., 2013, Molecular morphological and agronomic characterization of the sweet potato (Ipomoea batatas L.) germplasm collection from mozambique: genotype selection for drought prone regions, South African Journal of Botany, 88: 142-151. https://doi.org/10.1016/j.sajb.2013.07.008 Meiyalaghan S., Thomson S., Kenel F., Monaghan K., Jacobs J., and Baldwin S., 2019, Development and application of high-resolution melting DNA markers for the polygenic control of tuber skin colour in autotetraploid potato, Molecular Breeding, 39: 99. https://doi.org/10.1007/s11032-019-1009-0 Merrick L., Herr A., Sandhu K., Lozada D., and Carter A., 2022, Optimizing plant breeding programs for genomic selection, Agronomy, 12(3): 714. https://doi.org/10.3390/agronomy12030714 Nwankwo I., Akinbo O., Ikoro A., Orji N., and Njoku T., 2018, Evaluation of selected sweet potato landraces for high harvest index and high root yield indices for parental selection., International Journal of Agricultural Policy and Research, 6: 90-97. Ojwang S., Okello J., Otieno D., Mutiso J., Lindqvist-Kreuze H., Coaldrake P., Mendes T., Andrade M., Sharma N., Gruneberg W., Makunde G., Ssali R., Yada B., Mayanja S., Polar V., Oloka B., Chelangat D., Ashby J., Hareau G., and Campos H., 2023, Targeting market segment needs with public-good crop breeding investments: a case study with potato and sweetpotato focused on poverty alleviation nutrition and gender, Frontiers in Plant Science, 14: 1105079. https://doi.org/10.3389/fpls.2023.1105079 PMid:37008496 PMCid:PMC10050369 Otoboni M., Oliveira D., Vargas P., Pavan B., and Andrade M., 2020, Genetic parameters and gain from selection in sweet potato genotypes with high beta-carotene content, Crop Breeding and Applied Biotechnology, 20(3):e31632038. https://doi.org/10.1590/1984-70332020v20n3a42 Qin T., Ali K., Wang Y., Dormatey R., Yao P., Bi Z., Liu Y., Sun C., and Bai J., 2022, Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with different rooting depth responses to drought stress in potato, Frontiers in Plant Science, 13: 1007866. https://doi.org/10.3389/fpls.2022.1007866 PMid:36340359 PMCid:PMC9629812 Rosero A., Burgos-Paz W., Araujo H., Pastrana-Vargas I., Martínez R., Pérez J., and Espitia L., 2023, Sweet potato varietal selection using combined methods of multi-trait index genetic gain and stability from multi-environmental evaluations, Horticulturae, 9(9): 974. https://doi.org/10.3390/horticulturae9090974 Sandhu K., Shiv A., Kaur G., Meena M., Raja A., Vengavasi K., Mall A., Kumar S., Singh P., Singh J., Hemaprabha G., Pathak A., Krishnappa G., and Kumar S., 2022, Integrated approach in genomic selection to accelerate genetic gain in sugarcane, Plants, 11(16): 2139. https://doi.org/10.3390/plants11162139 PMid:36015442 PMCid:PMC9412483
RkJQdWJsaXNoZXIy MjQ4ODYzMg==