Plant Gene and Trait 2024, Vol.15, No.5, 265-274 http://genbreedpublisher.com/index.php/pgt 273 Huang S., Ding J., Deng D., Tang W., Sun H., Liu D., Zhang L., Niu X., Zhang X., Meng M., Yu J., Liu J., Han Y., Shi W., Zhang D., Cao S., Wei Z., Cui Y., Xia Y., Zeng H., Bao K., Lin L., Min Y., Zhang H., Miao M., Tang X., Zhu Y., Sui Y., Li G., Sun H., Yue J., Sun J., Liu F., Zhou L., Lei L., Zheng X., Liu M., Huang L., Song J., Xu C., Li J., Ye K., Zhong S., Lu B., He G., Xiao F., Wang H., Zheng H., Fei Z., and Liu Y., 2013, Draft genome of the kiwifruit Actinidia chinensis, Nature Communications, 4: 2640. https://doi.org/10.1038/ncomms3640 PMid:24136039 PMCid:PMC4089393 Jin M., Gan S., Jiao J., He Y., Liu H., Yin X., Zhu Q., and Rao J., 2021, Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations, Plant Science, 308: 110927. https://doi.org/10.1016/j.plantsci.2021.110927 PMid:34034875 Kim S., Kim D., and Kwak Y., 2023, Variations in kiwifruit microbiota across cultivars and tissues during developmental stages, The Plant Pathology Journal, 39: 245-254. https://doi.org/10.5423/PPJ.OA.03.2023.0038 PMid:37291765 PMCid:PMC10265115 Li M., Wu Z., Gu H., Cheng D., Guo X., Li L., Shi C., Xu G., Gu S., Abid M., Zhong Y., Qi X., and Chen J., 2021, AvNAC030, a NAC domain transcription factor, enhances salt stress tolerance in kiwifruit, International Journal of Molecular Sciences, 22(21): 11897. https://doi.org/10.3390/ijms222111897 PMid:34769325 PMCid:PMC8585034 Li Z., Bai D., Zhong Y., Lin M., Sun L., Qi X., Hu C., and Fang J., 2022, Full-length transcriptome and RNA-seq analyses reveal the mechanisms underlying waterlogging tolerance in kiwifruit (Actinidia valvata), International Journal of Molecular Sciences, 23(6): 3237. https://doi.org/10.3390/ijms23063237 PMid:35328659 PMCid:PMC8951935 Li Z., Yang S., Ma Y., Sui Y., Xing H., Zhang W., Liao Q., and Jiang Y., 2023, Molecular mechanism of miR160d in regulating kiwifruit resistance to Botrytis cinerea, Journal of Agricultural and Food Chemistry, 71(27): 10304-10313. https://doi.org/10.1021/acs.jafc.3c02741 PMid:37381782 Liang D., Gao F., Ni Z., Lin L., Deng Q., Tang Y., Wang X., Luo X., and Xia H., 2018, Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription, Molecules, 23(3): 584. https://doi.org/10.3390/molecules23030584 PMid:29509672 PMCid:PMC6017150 Ling C., Liu Y., Yang Z., Xu J., Ouyang Z., Yang J., and Wang S., 2023, Genome-wide identification of HSF gene family in kiwifruit and the function of AeHSFA2b in salt tolerance, International Journal of Molecular Sciences, 24(21): 15638. https://doi.org/10.3390/ijms242115638 PMid:37958622 PMCid:PMC10649126 Liu X., Bulley S., Varkonyi-Gasic E., Zhong C., and Li D., 2023, Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress, Plant Physiology, 192(2): 982-999. https://doi.org/10.1093/plphys/kiad121 PMid:36823691 PMCid:PMC10231468 Raza A., 2020, Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants, Plant Cell Reports, 41: 741-763. https://doi.org/10.1007/s00299-020-02635-8 PMid:33251564 Razzaq M., Aleem M., Mansoor S., Khan M., Rauf S., Iqbal S., and Siddique K., 2021, Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops, International Journal of Molecular Sciences, 22(3): 1292. https://doi.org/10.3390/ijms22031292 PMid:33525517 PMCid:PMC7866018 Roychowdhury R., Das S., Gupta A., Parihar P., Chandrasekhar K., Sarker U., Kumar A., Ramrao D., and Sudhakar C., 2023, Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses, Genes, 14(6): 1281. https://doi.org/10.3390/genes14061281 PMid:37372461 PMCid:PMC10298225 Scaglione D., Fornasiero A., Pinto C., Cattonaro F., Spadotto A., Infante R., Meneses C., Messina R., Lain O., Cipriani G., and Testolin R., 2015, A RAD-based linkage map of kiwifruit (Actinidia chinensis Pl.) as a tool to improve the genome assembly and to scan the genomic region of the gender determinant for the marker-assisted breeding, Tree Genetics & Genomes, 11: 115. https://doi.org/10.1007/s11295-015-0941-3 Shu P., Zhang Z., Wu Y., Chen Y., Li K., Deng H., Zhang J., Zhang X., Wang J., Liu Z., Xie Y., Du K., Li M., Bouzayen M., Hong Y., Zhang Y., and Liu M., 2023, A comprehensive metabolic map reveals major quality regulations in red flesh kiwifruit (Actinidia chinensis), The New Phytologist, 238(5): 2064-2079. https://doi.org/10.1111/nph.18840 PMid:36843264
RkJQdWJsaXNoZXIy MjQ4ODYzMg==