Plant Gene and Trait 2024, Vol.15, No.5, 253-264 http://genbreedpublisher.com/index.php/pgt 263 Acknowledgments Thank you to all the peer reviewers for providing valuable corrections and suggestions to improve the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Akohoue F., and Miedaner T., 2022, Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize, Frontiers in Plant Science, 13: 1050891. https://doi.org/10.3389/fpls.2022.1050891 PMid:36388551 PMCid:PMC9662303 Chand S., Nanda S., and Joshi R., 2018, Genetics and molecular mapping of a novel purple blotch-resistant gene ApR1 in onion (Allium cepa L.) using STS and SSR markers, Molecular Breeding, 38: 109. https://doi.org/10.1007/s11032-018-0864-4 Cramer C., Mandal S., Sharma S., Nourbakhsh S., Goldman I., and Guzmán I., 2021, Recent advances in onion genetic improvement, Agronomy, 11(3): 482. https://doi.org/10.3390/agronomy11030482 Collard B., Collard B., Jahufer M., Brouwer J., and Pang E., 2005, An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts, Euphytica, 142: 169-196. https://doi.org/10.1007/s10681-005-1681-5 Collins P., Wen Z., and Zhang S., 2018, Marker-assisted breeding for disease resistance in crop plants, In: Gosal S., and Wani S. (eds.), Biotechnologies of crop improvement, Springer, Cham, Switzerland, pp.41-57. https://doi.org/10.1007/978-3-319-94746-4_3 PMCid:PMC6102165 Jiang G., 2013, Molecular markers and marker-assisted breeding in plants, In: Andersen S.B. (eds.), Plant breeding from laboratories to fields, IntechOpen, London, UK, pp.300. https://doi.org/10.5772/52583 Kim S., Kim C., Choi M., and Kim S., 2016, Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew (Peronospora destructor) in onion (Allium cepaL.), Euphytica, 208: 561-569. https://doi.org/10.1007/s10681-015-1601-2 Kim S., Park J., Park T., Lee H., Choi J., and Park Y., 2021, Development of molecular markers associated with resistance to gray mold disease in onion (Allium cepa L.) through RAPD-PCR and transcriptome analysis, Horticulturae, 7(11): 436. https://doi.org/10.3390/horticulturae7110436 Kim S., Yoon J., Han J., Seo Y., Kang B., Lee J., and Ochar K., 2023, Green onion (Allium fistulosum): an aromatic vegetable crop esteemed for food, nutritional and therapeutic significance, Foods, 12(24): 4503. https://doi.org/10.3390/foods12244503 PMid:38137307 PMCid:PMC10742967 Khosa J., McCallum J., Dhatt A., and Macknight R., 2016, Enhancing onion breeding using molecular tools, Plant Breeding, 135: 9-20. https://doi.org/10.1111/pbr.12330 Khrustaleva L., Mardini M., Kudryavtseva N., Alizhanova R., Romanov D., Sokolov P., and Monakhos G., 2019, The power of genomic in situ hybridization (GISH) in interspecific breeding of bulb onion (Allium cepaL.) resistant to downy mildew (Peronospora destructor [Berk.] Casp.), Plants, 8(2): 36. https://doi.org/10.3390/plants8020036 PMid:30720753 PMCid:PMC6410304 Lee S., Kim D., and Kim Y., 2022, The effects of antioxidants on the changes in volatile compounds in heated Welsh onions (Allium fistulosum L.) during storage, Molecules, 27(9): 2674. https://doi.org/10.3390/molecules27092674 PMid:35566028 PMCid:PMC9105643 Leach A., Reiners S., and Nault B., 2020, Challenges in integrated pest management: a case study of onion thrips and bacterial bulb rot in onion, Crop Protection, 133: 105123. https://doi.org/10.1016/j.cropro.2020.105123 Ludwików A., Cieśla A., Arora P., Das G., Rao G., and Das R., 2015, Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar, Frontiers in Plant Science, 6: 698. https://doi.org/10.3389/fpls.2015.00698 Ma Z.Q., and Cai R.X., 2024, The significance of wide hybridization for wheat genetic improvement, Triticeae Genomics and Genetics, 15(2): 100-110. https://doi.org/10.5376/tgg.2024.15.0010
RkJQdWJsaXNoZXIy MjQ4ODYzMg==