PGT_2024v15n5

Plant Gene and Trait 2024, Vol.15, No.5, 220-229 http://genbreedpublisher.com/index.php/pgt 228 Funding This work was financially supported by the National Key Research and Development Program of China (2022YFD2301100), the Guangxi Natural Science Foundation (GK AA22117002), the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (SKLCUSA-a202207), and the 'One Hundred Person' Project of Guangxi Province, Science. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Barreto F., Balsalobre T., Chapola R., Garcia A., Souza A., Hoffmann H., Gazaffi R., and Carneiro M., 2021, Genetic variability, correlation among agronomic traits, and genetic progress in a sugarcane diversity panel, Agriculture, 11(6): 533. https://doi.org/10.3390/agriculture11060533 Barreto F., Rosa J., Balsalobre T., Pastina M., Silva R., Hoffmann H., Souza A., Garcia A., and Carneiro M., 2019, A genome-wide association study identified loci for yield component traits in sugarcane (Saccharumspp.), PLoS ONE, 14(7): e0219843. https://doi.org/10.1371/journal.pone.0219843 PMid:31318931 PMCid:PMC6638961 Budeguer F., Enrique R., Perera M., Racedo J., Castagnaro A., Noguera A., and Welin B., 2021, Genetic transformation of sugarcane, current status and future prospects, Frontiers in Plant Science, 12: 768609. https://doi.org/10.3389/fpls.2021.768609 PMid:34858464 PMCid:PMC8632530 Cortes L., Zhang Z., and Yu J., 2021, Status and prospects of genome-wide association studies in plants, The Plant Genome, 14(1): e20077. https://doi.org/10.1002/tpg2.20077 PMid:33442955 Fickett N., Gutiérrez A., Verma M., Pontif M., Hale A., Kimbeng C., and Baisakh N., 2019, Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection, Genomics, 111(6): 1794-1801. https://doi.org/10.1016/j.ygeno.2018.12.002 PMid:30529701 Gouy M., Rousselle Y., Chane A., Anglade A., Royaert S., Nibouche S., and Costet L., 2014, Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane, Euphytica, 202: 269-284. https://doi.org/10.1007/s10681-014-1294-y Hayes B., Wei X., Joyce P., Atkin F., Deomano E., Yue J., Nguyen L., Ross E., Cavallaro T., Aitken K., and Voss-Fels K., 2021, Accuracy of genomic prediction of complex traits in sugarcane, Theoretical and Applied Genetics, 134: 1455-1462. https://doi.org/10.1007/s00122-021-03782-6 PMid:33590303 Islam M., McCord P., Read Q., Qin L., Lipka A., Sood S., Todd J., and Olatoye M., 2022, Accuracy of genomic prediction of yield and sugar traits in Saccharumspp. hybrids, Agriculture, 12(9): 1436. https://doi.org/10.3390/agriculture12091436 Khanbo S., Tangphatsornruang S., Piriyapongsa J., Wirojsirasak W., Punpee P., Klomsa-ard and Ukoskit K., 2020, Candidate gene association of gene expression data in sugarcane contrasting for sucrose content, Genomics, 113(1): 229-237. https://doi.org/10.1016/j.ygeno.2020.12.014 PMid:33321201 Liu H., and Yan J., 2018, Crop genome-wide association study: a harvest of biological relevance, The Plant Journal, 97: 8-18. https://doi.org/10.1111/tpj.14139 PMid:30368955 Mahadevaiah C., Appunu C., Aitken K., Suresha G., Vignesh P., Swamy H., Valarmathi R., Hemaprabha G., Alagarasan G., and Ram B., 2021, Genomic selection in sugarcane: current status and future prospects, Frontiers in Plant Science, 12: 708233. https://doi.org/10.3389/fpls.2021.708233 PMid:34646284 PMCid:PMC8502939 Meena M., Appunu C., Kumar R., Manimekalai R., Vasantha S., Krishnappa G., Kumar R., Pandey S., and Hemaprabha G., 2022, Recent advances in sugarcane genomics, physiology, and phenomics for superior agronomic traits, Frontiers in Genetics, 13: 854936. https://doi.org/10.3389/fgene.2022.854936 PMid:35991570 PMCid:PMC9382102

RkJQdWJsaXNoZXIy MjQ4ODYzMg==