PGT_2024v15n4

Plant Gene and Traits 2024, Vol.15, No.4, 207-219 http://genbreedpublisher.com/index.php/pgt 218 Shen T., Huang B., Xu M., Zhou P., Ni Z., Gong C., Wen Q., Cao F., and Xu L., 2022, The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis, Horticulture Research, 9: uhab083. https://doi.org/10.1093/hr/uhab083 PMid:35039868 PMCid:PMC8789033 Tan L., Cui D., Wang L., Liu Q., Zhang D., Hu X., Fu Y., Chen S., Zou Y., Chen W., Wen W., Yang X., Yang Y., Li P., and Tang Q., 2022, Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring, Horticulture Research, 9: uhac086. https://doi.org/10.1093/hr/uhac086 PMid:35694722 PMCid:PMC9178331 Thudi M., Palakurthi R., Schnable J., Chitikineni A., Dreisigacker S., Mace E., Srivastava R., Satyavathi C., Odeny D., Tiwari V., Lam H., Hong Y., Singh V., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S., Close T., Shubo W., and Varshney R., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351 PMid:33412425 PMCid:PMC7903322 Wang X., Wang X., Xu Y., Hu Z., and Xu C., 2018, Genomic selection methods for crop improvement: current status and prospects, The Crop Journal, 6(4): 330-340. https://doi.org/10.1016/j.cj.2018.03.001 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality, Proceedings of the National Academy of Sciences of the United States of America, 115: E4151-E4158. https://doi.org/10.1073/pnas.1719622115 PMid:29678829 PMCid:PMC5939082 Wu Q., Tong W., Zhao H., Ge R., Li R., Huang J., Li F., Wang Y., Ali I., Deng W., Wang W., Wan X., Zhang Z., and Xia E., 2022, Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116Camellia plants, The Plant Journal, 111(2): 406-421. https://doi.org/10.1111/tpj.15799 PMid:35510493 Xia E., Tong W., Hou Y., An Y., Chen L., Wu Q., Liu Y., Yu J., Li F., Li R., Li P., Zhao H., Ge R., Huang J., Mallano A., Zhang Y., Liu S., Deng W., Song C., Zhang Z., Zhao J., Wei S., Zhang Z., Xia T., Wei C., and Wan X., 2020, The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants, Molecular Plant, 13(7): 1013-1026. https://doi.org/10.1016/j.molp.2020.04.010 PMid:32353625 Xu Y., Liu X., Fu J., Wang H., Wang J., Huang C., Prasanna B., Olsen M., Wang G., and Zhang A., 2019, Enhancing genetic gain through genomic selection: from livestock to plants, Plant Communications, 1(1): 100005. https://doi.org/10.1016/j.xplc.2019.100005 PMid:33404534 PMCid:PMC7747995 Yan C., Lin P., Lyu T., Hu Z., Fan Z., Li X., Yao X., Li J., and Yin H., 2018, Unraveling the roles of regulatory genes during domestication of cultivated Camellia: evidence and insights from comparative and evolutionary genomics, Genes, 9(10): 488. https://doi.org/10.3390/genes9100488 PMid:30308953 PMCid:PMC6211025 Yang C., Wu P., Yao X., Sheng Y., Zhang C., Lin P., and Wang K., 2022, Integrated transcriptome and metabolome analysis reveals key metabolites involved in Camellia oleifera defense against anthracnose, International Journal of Molecular Sciences, 23(1): 536. https://doi.org/10.3390/ijms23010536 PMid:35008957 PMCid:PMC8745097 Yang S., Fresnedo-Ramírez J., Wang M., Cote L., Schweitzer P., Barba P., Takacs E., Clark M., Luby J., Manns D., Sacks G., Mansfield A., Londo J., Fennell A., Gadoury D., Reisch B., Cadle-Davidson L., and Sun Q., 2016, A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine, Horticulture Research, 3: 16002. https://doi.org/10.1038/hortres.2016.2 PMid:27257505 PMCid:PMC4879517 Ye C., He Z., Peng J., Wang R., Wang X., Fu M., Zhang Y., Wang A., Liu Z., Jia G., Chen Y., and Tian B., 2023, Genomic and genetic advances of oiltea-camellia (Camellia oleifera), Front. Plant Sci., 14:1101766. https://doi.org/10.3389/fpls.2023.1101766 PMid:37077639 PMCid:PMC10106683 Yu X., Xiao J., Chen S., Yu Y., Ma J., Lin Y., Li R., Lin J., Fu Z., Zhou Q., Chao Q., Chen L., Yang Z., and Liu R., 2020, Metabolite signatures of diverse Camellia sinensis tea populations, Nature Communications, 11: 5586. https://doi.org/10.1038/s41467-020-19441-1 PMid:33149146 PMCid:PMC7642434

RkJQdWJsaXNoZXIy MjQ4ODYzMg==