Plant Gene and Traits 2024, Vol.15, No.4, 174-183 http://genbreedpublisher.com/index.php/pgt 183 Stirnweis D., Milani S., Brunner S., Herren G., Buchmann G., Peditto D., Jordan T., and Keller B., 2014, Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants, The Plant Journal, 79(6): 893-903. https://doi.org/10.1111/tpj.12592 PMid:24942051 Wang F., Zhang M., Hu Y., Gan M., Jiang B., Hao M., Ning S., Yuan Z., Chen X., Chen X., Zhang L., Wu B., Liu D., and Huang L., 2022, Pyramiding of adult-plant resistance genes enhances all-stage resistance to wheat stripe rust, Plant Disease, 107(3): 879-885. https://doi.org/10.1094/PDIS-07-22-1716-RE Wang X., Chen P., and Zhang S., 2001, Pyramiding and marker-assisted selection for powdery mildew resistance genes in common wheat, Acta genetica Sinica, 28(7): 640-646. Wu P., Xie J., Hu J., Qiu D., Liu Z., Li J., Li M., Zhang H., Yang L., Liu H., Zhou Y., Zhang Z., and Li H., 2018, Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat, Frontiers in Plant Science, 9: 95. https://doi.org/10.3389/fpls.2018.00095 PMid:29491869 PMCid:PMC5817070 Xie J., Guo G., Wang Y., Hu T., Wang L., Li J., Qiu D., Li Y., Wu Q., Lu P., Chen Y., Dong L., Li M., Zhang H., Zhang P., Zhu K., Li B., Deal K., Huo N., Zhang Y., Luo M., Liu S., Gu Y., Li H., and Liu Z., 2020, A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat, The New Phytologist, 228(3): 1011-1026. https://doi.org/10.1111/nph.16762 PMid:32569398 Yahiaoui N., Srichumpa P., Dudler R., and Keller B., 2004, Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat, The Plant Journal, 37(4): 528-538. https://doi.org/10.1046/j.1365-313x.2003.01977.x Yang H., Renshaw D., Thomas G., Buirchell B., and Sweetingham M., 2008, A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.), Molecular Breeding, 21: 473-483. Zhang D., Ouyang S., Wang L., Cui Y., Wu Q., Liang Y., Wang Z., Xie J., Zhang D., Wang Y., Chen Y., and Liu Z., 2015, Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL, Journal of Integrative Agriculture, 14: 603-609. https://doi.org/10.1016/S2095-3119(14)60774-7 Zhang L., Hua W., Guan H., Li G., Zhang H.T., Xie C., Yang Z., Sun Q.X., and Liu Z., 2009, Molecular mapping of powdery mildew resistance gene MlWE29 in wheat originated from wild emmer (Triticum turgidumvar. dicoccoides), Acta Agronomica Sinica, 35: 1791-1797. Zhao J., Xu C., Xu J., Huang L., Zhang D., and Liang D., 2017, Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale, Australasian Plant Pathology, 47: 53-61. https://doi.org/10.1007/s13313-017-0527-7 Zhu K., Li M., Wu H., Zhang D., Dong L., Wu Q., Chen Y., Xie J., Lu P., Guo G., Zhang H., Zhang P., Li B., Li W., Dong L., Wang Q., Zhu J., Hu W., Guo L., Wang R., Yuan C., Li H., Liu Z., and Hua W., 2021, Fine mapping of powdery mildew resistance gene MlWE74 derived from wild emmer wheat (Triticum turgidumssp. dicoccoides) in an NBS-LRR gene cluster, Theoretical and Applied Genetics, 135: 1235-1245. https://doi.org/10.1007/s00122-021-04027-2 PMid:35006335
RkJQdWJsaXNoZXIy MjQ4ODYzMg==