PGT_2024v15n4

Plant Gene and Traits 2024, Vol.15, No.4, 174-183 http://genbreedpublisher.com/index.php/pgt 182 Fang J., 2024, Breeding 5.0: AI-driven revolution in designed plant breeding, Molecular Plant Breeding, 15(1): 27-33. https://doi.org/10.5376/mpb.2024.15.0004 Huang X., and Röder M., 2004, Molecular mapping of powdery mildew resistance genes in wheat: a review, Euphytica, 137: 203-223. https://doi.org/10.1023/B:EUPH.0000041576.74566.d7 Jiang C., 2024, Genetic mechanisms of crop disease resistance: new advances in GWAS, Plant Gene and Trait, 15(1): 15-22. https://doi.org/10.5376/pgt.2024.15.0003 Kang Y., Zhou M., Merry A., and Barry K., 2020, Mechanisms of powdery mildew resistance of wheat - a review of molecular breeding, Plant Pathology, 69: 601-617. https://doi.org/10.1111/ppa.13166 Kumar S., Jacob S., Mir R., Vikas V., Kulwal P., Chandra T., Kaur S., Kumar U., Kumar S., Sharma S., Singh R., Prasad S., Singh A., Singh A., Kumari J., Saharan M., Bhardwaj S., Prasad M., Kalia S., and Singh K., 2022, Indian wheat genomics initiative for harnessing the potential of wheat germplasm resources for breeding disease-resistant, nutrient-dense, and climate-resilient cultivars, Frontiers in Genetics, 13: 834366. https://doi.org/10.3389/fgene.2022.834366 PMid:35846116 PMCid:PMC9277310 Li J., Yang X., Li Y., Niu J., and He D., 2017, Proteomic analysis of developing wheat grains infected by powdery mildew (Blumeria graminis f.sp. tritici), Journal of Plant Physiology, 215: 140-153. https://doi.org/10.1016/j.jplph.2017.06.003 PMid:28646681 Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., Li Y., Shi W., Yang L., Wu Q., Chen Y., Lu P., Guo G., Zhang H., Zhang P., Zhu K., Li Y., Zhang Y., Wang R., Yuan C., Liu W., Yu D., Luo M., Fahima T., Nevo E., Li H., and Liu Z., 2020, A CNL protein in wild emmer wheat confers powdery mildew resistance, The New Phytologist, 228(3): 1027-1037. https://doi.org/10.1111/nph.16761 PMid:32583535 Liang X., Xu H., Zhu S., Zheng Y., Zhong W., Li H., Niu L., Wu L., Zhang L., Song J., He H., Liu C., and Ma P., 2022, Genetically dissecting the novel powdery mildew resistance gene in the wheat breeding line PBDH1607, Plant Disease, 106(8): 2145-2154. https://doi.org/10.1094/PDIS-12-21-2771-RE PMid:35108069 Liu J., Liu D., Tao W., Li W., Wang S., Chen P., Cheng S., and Gao D., 2000, Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat, Plant Breeding, 119: 21-24. Ma P., Xu H., Xu Y., Song L., Liang S., Sheng Y., Han G., Zhang X., and An D., 2017, Characterization of a powdery mildew resistance gene in wheat breeding line 10V-2 and its application in marker-assisted selection, Plant Disease, 102(5): 925-931. https://doi.org/10.1094/PDIS-02-17-0199-RE PMid:30673391 Mapuranga J., Chang J., and Yang W., 2022, Combating powdery mildew: advances in molecular interactions between Blumeria graminis f. sp. tritici andwheat, Frontiers in Plant Science, 13: 1102908. https://doi.org/10.3389/fpls.2022.1102908 PMid:36589137 PMCid:PMC9800938 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. Mu Y., Gong W., Qie Y., Liu X., Li L., Sun N., Liu W., Guo J., Han R., Yu Z., Xiao L., Su F., Zhang W., Wang J., Han G., and Ma P., 2022, Identification of the powdery mildew resistance gene in wheat breeding line Yannong 99102-06188 via bulked segregant exome capture sequencing, Frontiers in Plant Science, 13: 1005627. https://doi.org/10.3389/fpls.2022.1005627 PMid:36147228 PMCid:PMC9489141 Mushtaq M., Sakina A., Wani S., Shikari A., Tripathi P., Zaid A., Galla A., Abdelrahman M., Sharma M., Singh A., and Salgotra R., 2019, Harnessing genome editing techniques to engineer disease resistance in plants, Frontiers in Plant Science, 10: 550. https://doi.org/10.3389/fpls.2019.00550 PMid:31134108 PMCid:PMC6514154 Pietrusińska A., and Czembor J., 2017, Pyramiding winter wheat resistance genes (Pm21 + Pm34) of powdery mildew of cereals and grasses (Blumeria graminis f. sp. tritici) Piramidowanie genów odporności (Pm21 +Pm34) pszenicy ozimej na mączniaka prawdziwego zbóż i traw (Blumeria graminis f. sp. tritici), Progress in Plant Protection, 57: 41-46. Qiu L., Liu N., Wang H., Shi X., Li F., Zhang Q., Wang W., Guo W., Hu Z., Li H., Ma J., Sun Q., and Xie C., 2021, Fine mapping of a powdery mildew resistance gene MlIW39 derived from wild emmer wheat (Triticum turgidumssp. dicoccoides), Theoretical and Applied Genetics, 134: 2469-2479. https://doi.org/10.1007/s00122-021-03836-9 PMid:33987716 Sánchez-Martín J., Widrig V., Herren G., Wicker T., Zbinden H., Gronnier J., Spörri L., Praz C., Heuberger M., Kolodziej M., Isaksson J., Steuernagel B., Karafiátová M., Doležel J., Zipfel C., and Keller B., 2021, Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins, Nature plants, 7: 327-341. https://doi.org/10.1038/s41477-021-00869-2

RkJQdWJsaXNoZXIy MjQ4ODYzMg==