PGT_2024v15n3

Plant Gene and Traits 2024, Vol.15, No.3, 152-161 http://genbreedpublisher.com/index.php/pgt 161 Shahzadi I., Abdullah, Mehmood F., Ali Z., Ahmed I., and Mirza B., 2020, Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae, Genomics, 112(2): 1454-1463. https://doi.org/10.1016/j.ygeno.2019.08.016 PMid:31450007 Somaratne Y., Guan D., Wang W., Zhao L., and Xu S., 2019, The complete chloroplast genomes of two Lespedeza species: insights into codon usage bias, RNA editing sites, and phylogenetic relationships in Desmodieae (Fabaceae: Papilionoideae), Plants, 9(1): 51. https://doi.org/10.3390/plants9010051 PMid:31906237 PMCid:PMC7020202 Song W., Ji C., Chen Z., Cai H., Wu X., Shi C., and Wang S., 2022, Comparative analysis the complete chloroplast genomes of nine Musa species: genomic features, comparative analysis, and phylogenetic implications, Frontiers in Plant Science, 13: 832884. https://doi.org/10.3389/fpls.2022.832884 PMid:35222490 PMCid:PMC8866658 Thode V., and Lohmann L., 2019, Comparative chloroplast genomics at low taxonomic levels: a case study using Amphilophium(Bignonieae, Bignoniaceae), Frontiers in Plant Science, 10: 796. https://doi.org/10.3389/fpls.2019.00796 PMid:31275342 PMCid:PMC6594259 Wang Y., Xu J., Hu B., Dong C., Sun J., Li Z., Ye K., Deng F., Wang L., Aslam M., Lv W., Qin Y., and Cheng Y., 2023, Assembly, annotation, and comparative analysis of Ipomoea chloroplast genomes provide insights into the parasitic characteristics of Cuscuta species, Frontiers in Plant Science, 13: 1074697. https://doi.org/10.3389/fpls.2022.1074697 PMid:36733590 PMCid:PMC9887335 Wei Z., Chen F., Ding H., Liu W., Yang B., Geng J., Chen S., and Guo S., 2023, Comparative analysis of six chloroplast genomes in Chenopodium and its related genera (Amaranthaceae): new insights into phylogenetic relationships and the development of species-specific molecular markers, Genes, 14(12): 2183. https://doi.org/10.3390/genes14122183 PMid:38137004 PMCid:PMC10743295 Xia L., Wang H., Zhao X., Obel H., Yu X., Lou Q., Chen J., and Cheng C., 2023, Chloroplast pan-genomes and comparative transcriptomics reveal genetic variation and temperature adaptation in the cucumber, International Journal of Molecular Sciences, 24(10): 8943. https://doi.org/10.3390/ijms24108943 PMid:37240287 PMCid:PMC10219501 Xin Y., Yu W., Eiadthong W., Cao Z., Li Q., Yang Z., Zhao W., and Xin P., 2023, Comparative analyses of 18 complete chloroplast genomes from eleven Mangifera species (Anacardiaceae): sequence characteristics and phylogenomics, Horticulturae, 9(1): 86. https://doi.org/10.3390/horticulturae9010086 Zhai W., Duan X., Zhang R., Guo C., Li L., Xu G., Shan H., Kong H., and Ren Y., 2019, Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae, Molecular Phylogenetics and Evolution, 135: 12-21. https://doi.org/10.1016/j.ympev.2019.02.024 PMid:30826488 Zhai Y., Yu X., Zhou J., Li J., Tian Z., Wang P., Meng Y., Zhao Q., Lou Q., Du S., and Chen J., 2021, Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis, Genome, 64(6): 627-638. https://doi.org/10.1139/gen-2020-0134 PMid:33460340 Zhang Z., Zhang D., Zou L., and Yao C., 2022, Comparison of chloroplast genomes and phylogenomics in the Ficus sarmentosa complex (Moraceae), PLoS One, 17(12): e0279849. https://doi.org/10.1371/journal.pone.0279849 PMid:36584179 PMCid:PMC9803296 Zhou J., Zhang S., Wang J., Shen H., Ai B., Gao W., Zhang C., Fei Q., Yuan D., Wu Z., Tembrock L., Li S., Gu C., and Liao X., 2021, Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution, Scientific Reports, 11: 9471. https://doi.org/10.1038/s41598-021-88160-4 PMid:33947883 PMCid:PMC8096831

RkJQdWJsaXNoZXIy MjQ4ODYzMg==