Plant Gene and Traits 2024, Vol.15, No.3, 129-140 http://genbreedpublisher.com/index.php/pgt 139 Liu J., Fernandes H., Zamany A., Sikorski M., Jaskólski M., and Sniezko R., 2021, In-vitro anti-fungal assay and association analysis reveal a role for the Pinus monticola PR10 gene (PmPR10-3.1) in quantitative disease resistance to white pine blister rust, Genome, 64(7): 693-704. https://doi.org/10.1139/gen-2020-0080 PMid:33464999 Ma J., Chen X., Song Y., Zhang G., Zhou X., Que S., Mao F., Pervaiz T., Lin J., Li Y., Li W., Wu H., and Niu S., 2021, MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine, Plant Physiology, 187(1): 247-262. https://doi.org/10.1093/plphys/kiab250 PMid:34618133 PMCid:PMC8418398 Manso R., Fortin M., Calama R., and Pardos M., 2013, Modelling seed germination in forest tree species through survival analysis. The Pinus pinea L. case study, Forest Ecology and Management, 289: 515-524. https://doi.org/10.1016/j.foreco.2012.10.028 Mao J., Huang L., Chen M., Zeng W., Feng Z., Huang S., and Liu T., 2021, Integrated analysis of the transcriptome and metabolome reveals genes involved in terpenoid and flavonoid biosynthesis in the loblolly pine (Pinus taeda L.), Frontiers in Plant Science, 12: 729161. https://doi.org/10.3389/fpls.2021.729161 PMid:34659295 PMCid:PMC8519504 Miransari M., and Smith D., 2014, Plant hormones and seed germination, Environmental and Experimental Botany, 99: 110-121. https://doi.org/10.1016/j.envexpbot.2013.11.005 Nawrot‐Chorabik K., Osmenda M., Słowiński K., Latowski D., Tabor S., and Woodward S., 2021, Stratification, scarification and application of phytohormones promote dormancy breaking and germination of pelleted scots pine (Pinus sylvestris L.) seeds, Forests, 12(5): 621. https://doi.org/10.3390/f12050621 Palle S., Seeve C., Eckert A., Cumbie W., Goldfarb B., and Loopstra C., 2011, Natural variation in expression of genes involved in xylem development in loblolly pine (Pinus taeda L.), Tree Genetics and Genomes, 7: 193-206. https://doi.org/10.1007/s11295-010-0325-7 Park S., Klimaszewska K., Park J., and Mansfield S., 2010, Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees, Tree Physiology, 30(11): 1469-1478. https://doi.org/10.1093/treephys/tpq081 PMid:20935320 Ponnaiah M., Gilard F., Gakière B., El-Maarouf-Bouteau H., and Bailly C., 2019, Regulatory actors and alternative routes for Arabidopsis seed germination are revealed using a pathway-based analysis of transcriptomic datasets, The Plant Journal, 99(1): 163-175. https://doi.org/10.1111/tpj.14311 PMid:30868664 Ramos P., Provost G., Gantz C., Plomion C., and Herrera R., 2012, Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine, Plant Biology, 14(6): 923-933. https://doi.org/10.1111/j.1438-8677.2012.00572.x PMid:22646487 Ratnaparkhe S., Egertsdotter E., and Flinn B., 2009, Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment, Planta, 230: 339-354. https://doi.org/10.1007/s00425-009-0949-8 PMid:19466448 Salazar A., Maschinski J., Possley J., and Heineman K., 2018, Seed germination of 53 species from the globally critically imperiled pine rockland ecosystem of South Florida, USA: effects of storage, phylogeny and life-history traits, Seed Science Research, 28(1): 82-92. https://doi.org/10.1017/S0960258517000332 Salazar A., and Fernando D., 2019, Predicted functions, subcellular localizations, and expression patterns of genes encoding secretory proteins associated with pine pollen germination, Tree Genetics & Genomes, 15(3): 39. https://doi.org/10.1007/s11295-019-1344-7 Schlögl P., Santos A., Vieira L., Floh E., and Guerra M., 2012, Cloning and expression of embryogenesis-regulating genes in Araucaria angustifolia (Bert.) O. Kuntze (Brazilian pine), Genetics and Molecular Biology, 35: 172-181. https://doi.org/10.1590/S1415-47572012005000005 Smolikova G., Strygina K., Krylova E., Leonova T., Frolov A., Khlestkina E., and Medvedev S., 2021, Transition from seeds to seedlings: hormonal and epigenetic aspects, Plants, 10(9): 1884. https://doi.org/10.3390/plants10091884 PMid:34579418 PMCid:PMC8467299 Song Y., Lv Z., Wang Y., Li C., Jia Y., Zhu Y., Cao M., Zhou Y., Zeng X., Wang Z., Zhang L., and Di H., 2022, Identification of miRNAs mediating seed storability of maize during germination stage by high-throughput sequencing, transcriptome and degradome Sequencing, International Journal of Molecular Sciences, 23(20): 12339. https://doi.org/10.3390/ijms232012339 PMid:36293196 PMCid:PMC9604548
RkJQdWJsaXNoZXIy MjQ4ODYzMg==