Plant Gene and Traits 2024, Vol.15, No.3, 108-117 http://genbreedpublisher.com/index.php/pgt 116 References Bayoumi S., Rowan M., Beeching J., and Blagbrough I., 2008, Investigation of biosynthetic pathways to hydroxycoumarins during post‐harvest physiological deterioration in cassava roots by using stable isotope labelling, ChemBioChem, 9(18): 3013-3022. https://doi.org/10.1002/cbic.200800515 PMid:19035613 Bull S., Seung D., Chanez C., Mehta D., Kuon J., Truernit E., Hochmuth A., Zurkirchen I., Zeeman S., Gruissem W., and Vanderschuren H., 2018, Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch, Science Advances, 4(9): eaat6086. https://doi.org/10.1126/sciadv.aat6086 PMid:30191180 PMCid:PMC6124905 Ha C., Lộc N., Uyen L., Thu P., and Thu P., 2019, Identification, structural analysis, and expression profile of genes related to starch metabolism in cassava (Manihot esculenta Crantz), Vietnam Journal of Agricultural Sciences, 2(2): 370-375. Ihemere U., Arias-Garzon D., Lawrence S., and Sayre R., 2006, Genetic modification of cassava for enhanced starch production, Plant Biotechnology Journal, 4(4): 453-465. https://doi.org/10.1111/j.1467-7652.2006.00195.x PMid:17177810 Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., and Charpentier E., 2012, A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity, Science, 337(6096): 816-821. https://doi.org/10.1126/science.1225829 PMid:22745249 PMCid:PMC6286148 Li Y.Z., 2024, Starch biosynthesis and engineering starch yield and properties in cassava, Molecular Plant Breeding Ma P., Chen X., Liu C., Meng Y., Xia Z., Zeng C., Lu C., and Wang W., 2017, MeSAUR1, encoded by a small auxin-up RNA gene, acts as a transcription regulator to positively regulate ADP-glucose pyrophosphorylase small subunit1a gene in cassava, Frontiers in Plant Science, 8: 1315. https://doi.org/10.3389/fpls.2017.01315 PMid:28824663 PMCid:PMC5534448 Nagaya S., Kawamura K., Shinmyo A., and Kato K., 2010, The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells, Plant Cell Physiol., 51(2): 328-332. https://doi.org/10.1093/pcp/pcp188 PMid:20040586 Nekrasov V., Staskawicz B., Weigel D., Jones J.D.G., and Kamoun S., 2013, Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol., 31(8): 691-693. https://doi.org/10.1038/nbt.2655 PMid:23929340 Saithong T., Rongsirikul O., Kalapanulak S., Chiewchankaset P., Siriwat W., Netrphan S., Suksangpanomrung M., Meechai A., and Cheevadhanarak S., 2013, Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration, BMC Systems Biology, 7: 75. https://doi.org/10.1186/1752-0509-7-75 PMid:23938102 PMCid:PMC3847483 Salehuzzaman S., Jacobsen E., and Visser R., 1994, Expression patterns of two starch biosynthetic genes in in vitro cultured cassava plants and their induction by sugars, Plant Science, 98(1): 53-62. Seung D., Soyk S., Coiro M., Maier B.A., Eicke S., and Zeeman S.C., 2015, PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis, PLoS Biol., 13(2): e1002080. Sojikul P., Kongsawadworakul P., Viboonjun U., Thaiprasit J., Intawong B., Narangajavana J., and Svasti M., 2010, AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation, Physiologia Plantarum, 140(2): 189-298. https://doi.org/10.1111/j.1399-3054.2010.01389.x PMid:20536786 Tappiban P., Smith D., Triwitayakorn K., and Bao J., 2019, Recent understanding of starch biosynthesis in cassava for quality improvement: a review, Trends in Food Science & Technology, 83: 167-180. https://doi.org/10.1016/j.tifs.2018.11.019 Vasconcelos L., Brito A., Carmo C., and Oliveira E., 2016, Polymorphism of starch pathway genes in cassava, Genetics and Molecular Research: GMR, 15(4): gmr15049082. Wang W., Feng B., Xiao J., Xia Z., Zhou X., Li P., Zhang W., Wang Y., Møller B., Zhang P., Luo M., Xiao G., Liu J., Yang J., Chen S., Rabinowicz P., Chen X., Zhang H., Ceballos H., Lou Q., Zou M., Carvalho L., Zeng C., Xia J., Sun S., Fu Y., Wang H., Lu C., Ruan M., Zhou S., Wu Z., Liu H., Kannangara R., Jørgensen K., Neale R., Bonde M., Heinz N., Zhu W., Wang S., Zhang Y., Pan K., Wen M., Ma P., Li Z., Hu M., Liao W., Hu W., Zhang S., Pei J., Guo A., Guo J., Zhang J., Zhang Z., Ye J., Ou W., Ma Y., Liu X., Tallon L., Galens K., Ott S., Huang J., Xue J., An F., Yao Q., Lu X., Fregene M., Lopez-Lavalle L., Wu J., You F., Chen M., Hu S., Wu G., Zhong S., Ling P., Chen Y., Wang Q., Liu G., Liu B., Li K., and Peng M., 2014, Cassava genome from a wild ancestor to cultivated varieties, Nature Communications, 5: 5110. https://doi.org/10.1038/ncomms6110 PMid:25300236 PMCid:PMC4214410
RkJQdWJsaXNoZXIy MjQ4ODYzMg==