PGT_2024v15n2

Plant Gene and Trait 2024, Vol.15, No.2, 97-107 http://genbreedpublisher.com/index.php/pgt 106 Myburg A.A., Grattapaglia D., Tuskan G.A., Hellsten U., Hayes R.D., Grimwood J., Jenkins J., Lindquist E., Tice H., Bauer D., Goodstein D.M., Dubchak I., Poliakov A., Mizrachi E., Kullan A.R.K., Hussey S.G., Pinard D., van der Merwe K., Singh P., van Jaarsveld I., Silva-Junior O.B., Togawa R.C., Pappas M.R., Faria D.A., Sansaloni C.P., Petroli C.D., Yang X., Ranjan P., Tschaplinski T.J., Ye C.Y., Li T., Sterck L., Vanneste K., Murat F., Soler M., Clemente H.S., Saidi N., Wang H.C., Dunand C., Hefer C.A., Bornberg-Bauer E., Kersting A.R., Vining K., Amarasinghe V., Ranik M., Naithani S., Elser J., Boyd A.E., Liston A., Spatafora J.W., Dharmwardhana P., Raja R., Sullivan C., Romanel E., Alves-Ferreira M., Külheim C., Foley W., Carocha V., Paiva J., Kudrna D., Brommonschenkel S.H., Pasquali G., Byrne M., Rigault P., Tibbits J., Spokevicius A., Jones R.C., Steane D.A., Vaillancourt R.E., Potts B.M., Joubert F., Barry K., Pappas G.J., Strauss S.H., Jaiswal P., Grima-Pettenati J., Salse J., Van de Peer Y., Rokhsar D.S., and Schmutz J., 2014, The genome of Eucalyptus grandis, Nature, 510: 356-362. https://doi.org/10.1038/nature13308 PMid:24919147 Nagle M.F., Nahata S.S., Zahl B., de Rivera A.N., Tacker X.V., Elorriaga E., Ma C., Goralogia G.S., Klocko A.L., Gordon M., Joshi S., and Strauss S.H., 2023, Knockout of floral and meiosis genes using CRISPR/Cas9 produces male-sterility in Eucalyptus without impacts on vegetative growth, Plant Direct, 7(7): e507. https://doi.org/10.1038/nature13308 PMid:24919147 Nasr A., Khan T.S., Huang S.P., Wen B., Shao J.W., and Zhu G.P., 2019, Comparison among five Eucalyptus species based on their leaf contents of some primary and secondary metabolites, Current Pharmaceutical Biotechnology, 20(7): 573-587. https://doi.org/10.2174/1389201020666190610100122 PMid:31187707 Oliveira L., Breton M., Bastolla F., Camargo S., Margis R., Frazzon J., and Pasquali G., 2011, Reference genes for the normalization of gene expression in Eucalyptus species, Plant and Cell Physiology, 53: 405-422. https://doi.org/10.1093/pcp/pcr187 PMid:22197885 PMCid:PMC7107212 Pinto G., Araújo C., Santos C., and Neves L., 2013, Plant regeneration by somatic embryogenesis in Eucalyptus spp.: current status and future perspectives, Southern Forests: a Journal of Forest Science, 75(2): 59-69. Plasencia A., Soler M., Dupas A., Ladouce N., Silva-Martins G., Martinez Y., Lapierre C., Franche C., Truchet I., and Grima-Pettenati J., 2016, Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation, Plant Biotechnology Journal, 14(6): 1381-1393. https://doi.org/10.1111/pbi.12502 PMid:26579999 Rengel D., Clemente H., Servant F., Ladouce N., Paux E., Wincker P., Couloux A., Sivadon P., and Grima-Pettenati J., 2009, A new genomic resource dedicated to wood formation in Eucalyptus, BMC Plant Biology, 9: 36. https://doi.org/10.1186/1471-2229-9-36 PMid:19327132 PMCid:PMC2670833 Resende M., Resende M., Sansaloni C., Petroli C., Missiaggia A., Aguiar A., Abad J., Takahashi E., Rosado A., Faria D., Pappas G., Kilian A., and Grattapaglia D., 2012, Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees, The New Phytologist, 194(1): 116-128. https://doi.org/10.1111/j.1469-8137.2011.04038.x PMid:22309312 Silva-Junior O., Faria D., and Grattapaglia D., 2015, A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species, The New Phytologist, 206(4): 1527-1540. https://doi.org/10.1111/nph.13322 PMid:25684350 Silva-Pando F.J., and Pino-Pérez R., 2016, Introduction of Eucalyptus into Europe, Australian Forestry, 79(4): 283-291. https://doi.org/10.1080/00049158.2016.1242369 Soler M., Camargo E., Carocha V., Cassan-Wang H., Clemente H., Savelli B., Hefer C., Paiva J., Myburg A., and Grima-Pettenati J., 2015, The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function, The New Phytologist, 206(4): 1364-1377. https://doi.org/10.1111/nph.13039 PMid:25250741 Toit Y., Coles D., Mewalal R., Christie N., and Naidoo S., 2020, eCALIBRATOR: a comparative tool to identify key genes and pathways for Eucalyptus defense against biotic stressors, Frontiers in Microbiology, 11: 216. https://doi.org/10.3389/fmicb.2020.00216 PMid:32127794 PMCid:PMC7039109 Wang X., Xu Y., Zhang S., Cao L., Huang Y., Cheng J., Wu G., Tian S., Chen C., Liu Y., Yu H., Yang X., Lan H., Wang N., Wang L., Xu J., Jiang X., Xie Z., Tan M., Larkin R., Chen L., Ma B., Ruan Y., Deng X., and Xu Q., 2017, Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction, Nature Genetics, 49: 765-772. https://doi.org/10.1038/ng.3839 PMid:28394353

RkJQdWJsaXNoZXIy MjQ4ODYzMg==