PGT_2024v15n2

Plant Gene and Trait 2024, Vol.15, No.2, 97-107 http://genbreedpublisher.com/index.php/pgt 105 Acknowledgments We appreciate the feedback from two anonymous peer reviewers on the manuscript of this study. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Amanpreet K., and Rajesh M., 2021, Eucalyptus trees plantation: a review on suitability and their beneficial role, International Journal of Bio-resource and Stress Management, 12(1): 16-25. https://doi.org/10.23910/1.2021.2174 Assis T.F., 2011, Hybrids and mini-cutting: a powerful combination that has revolutionized the Eucalyptus clonal forestry, BMC Proceedings, 5: I18. https://doi.org/10.1186/1753-6561-5-S7-I18 PMCid:PMC3239861 Brezáni V., and Karel S., 2013, Secondary metabolites isolated from the genus Eucalyptus, Current Trends in Medicinal Chemistry, 7: 65-95. Dillon S., McEvoy R., Baldwin D., Rees G., Parsons Y., and Southerton S., 2014, Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (River Red Gum), PLoS One, 9(8): e103515. https://doi.org/10.1371/journal.pone.0103515 PMid:25093589 PMCid:PMC4122390 Elorriaga E., Klocko A., Ma C., Plessis M., An X., Myburg A., and Strauss S., 2021, Genetic containment in vegetatively propagated forest trees: CRISPR disruption of LEAFY function in Eucalyptus gives sterile indeterminate inflorescences and normal juvenile development, Plant Biotechnology Journal, 19: 1743-1755. https://doi.org/10.1111/pbi.13588 PMid:33774917 PMCid:PMC8428835 Finkeldey R., and Hattemer H.H., 2007, Sexual and asexual reproduction in tropical forests, In: Tropical Forest Genetics, Tropical Forestry, Springer, Berlin, Heidelberg, Germany, pp.41-52. https://doi.org/10.1007/978-3-540-37398-8_4 Gion J., Carouché A., Deweer S., Bedon F., Pichavant F., Charpentier J., Baillères H., Rozenberg P., Carocha V., Ognouabi N., Verhaegen D., Grima-Pettenati J., Vigneron P., and Plomion C., 2011, Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus, BMC Genomics, 12: 301. https://doi.org/10.1186/1471-2164-12-301 PMid:21651758 PMCid:PMC3130712 Grattapaglia D., 2004, Integrating genomics into Eucalyptus breeding, Genetics and Molecular Research, 3(3): 369-379. Grattapaglia D., and Kirst M., 2008, Eucalyptus applied genomics: from gene sequences to breeding tools, The New Phytologist, 179(4): 911-929. https://doi.org/10.1111/j.1469-8137.2008.02503.x PMid:18537893 Hewitt A., 2020, Genetic and environmental factors in the trade-off between sexual and asexual reproduction of a rare clonal angiosperm, 45(2): 187-194. https://doi.org/10.1111/aec.12846 Jones R.C., Hecht V.F.G., Potts B.M., Vaillancourt R.E., and Weller J.L., 2012, Expression of a FLOWERING LOCUS T homologue is temporally associated with annual flower bud initiation in Eucalyptus globulus subsp. globulus (Myrtaceae), Australian Journal of Botany, 59(8): 756-769. Kersting A., Mizrachi E., Bornberg-Bauer E., and Myburg A., 2015, Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus, The New Phytologist, 206(4): 1328-1336. https://doi.org/10.1111/nph.13211 PMid:25494981 Klocko A.L., Ma C., Robertson S., Esfandiari E., Nilsson O., and Strauss S.H., 2016, FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus, Plant Biotechnology Journal, 14(2): 808-819. https://doi.org/10.1111/pbi.12431 Külheim C., Yeoh S., Wallis I., Laffan S., Moran G., and Foley W., 2011, The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus, The New Phytologist, 191(4): 1041-1053. https://doi.org/10.1111/j.1469-8137.2011.03769.x PMid:21609332 Müller B., Filho J., Lima B., Garcia C., Missiaggia A., Aguiar A., Takahashi E., Kirst M., Gezan S., Silva-Junior O., Neves L., and Grattapaglia D., 2018, Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations, The New Phytologist, 221(2): 818-833. https://doi.org/10.1111/nph.15449

RkJQdWJsaXNoZXIy MjQ4ODYzMg==