Plant Gene and Trait 2024, Vol.15, No.2, 73-84 http://genbreedpublisher.com/index.php/pgt 82 nutrient management, ensuring that the yield-enhancing benefits of DEP1 are fully realized without compromising grain quality. Additionally, investment in genetic research and biotechnological tools such as CRISPR/Cas9 can accelerate the development of rice varieties with improved yield and stress resistance. Acknowledgments The authors extend sincere thanks to two anonymous peer reviewers for their feedback on the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Cui Y., Li R., Li G., Zhang F., Zhu T., Zhang Q., Ali J., Li Z., and Xu S., 2019, Hybrid breeding of rice via genomic selection, Plant Biotechnology Journal, 18: 57-67. https://doi.org/10.1111/pbi.13170 PMid:31124256 PMCid:PMC6920338 Duan E., Wang Y., Li X., Lin Q., Zhang T., Wang Y., Zhou C., Zhang H., Jiang L., Wang J., Lei C., Zhang X., Guo X., Wang H., and Wan J., 2019, OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice, Plant Cell, 31(5): 1026-1042. https://doi.org/10.1105/tpc.19.00023 PMid:30914468 PMCid:PMC6533028 Fei C., Yu J., Xu Z., and Xu Q., 2019, Erect panicle architecture contributes to increased rice production through the improvement of canopy structure, Molecular Breeding, 39: 128. https://doi.org/10.1007/s11032-019-1037-9 Fekih R., Takagi H., Tamiru M., Abe A., Natsume S., Yaegashi H., Sharma S., Sharma S., Kanzaki H., Matsumura H., Saitoh H., Mitsuoka C., Utsushi H., Uemura A., Kanzaki E., Kosugi S., Yoshida K., Cano L., Kamoun S., and Terauchi R., 2013, MutMap+: genetic mapping and mutant identification without crossing in rice, PLoS One, 8(7): e68529. https://doi.org/10.1371/journal.pone.0068529 PMid:23874658 PMCid:PMC3707850 Grenier C., Cao T., Ospina Y., Quintero C., Chatel M., Tohme J., Courtois B., and Ahmadi N., 2015, Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding, PLoS One, 10(8): e0136594. https://doi.org/10.1371/journal.pone.0136594 PMid:26313446 PMCid:PMC4551487 Hirochika H., Guiderdoni E., An G., Hsing Y., Eun M., Han C., Upadhyaya N., Ramachandran S., Zhang Q., Pereira A., Sundaresan V., and Leung H., 2004, Rice mutant resources for gene discovery, Plant Molecular Biology, 54: 325-334. https://doi.org/10.1023/B:PLAN.0000036368.74758.66 PMid:15284490 Huang L., Zhang R., Huang G., Li Y., Melaku G., Zhang S., Chen H., Zhao Y., Zhang J., Zhang Y., and Hu F., 2018, Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system, The Crop Journal, 6(5): 475-481. https://doi.org/10.1016/j.cj.2018.05.005 Huang X., Qian Q., Liu Z., Sun H., He S., Luo D., Xia G., Chu C., Li J., and Fu X., 2009, Natural variation at the DEP1 locus enhances grain yield in rice, Nature Genetics, 41: 494-497. https://doi.org/10.1038/ng.352 PMid:19305410 Huang Y., Bai X., Luo M., and Xing Y., 2019, Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice, Journal of Integrative Plant Biology, 61(9): 987-999. https://doi.org/10.1111/jipb.12729 PMid:30302902 Li F., Liu W., Tang J., Chen J., Tong H., Hu B., Li C., Fang J., Chen M., and Chu C., 2010, Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation, Cell Research, 20: 838-849. https://doi.org/10.1038/cr.2010.69 PMid:20502443 Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., and Li H., 2016, Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1in rice using a CRISPR/Cas9 system, Frontiers in Plant Science, 7: 377. https://doi.org/10.3389/fpls.2016.00377
RkJQdWJsaXNoZXIy MjQ4ODYzMg==