PGT_2024v15n2

Plant Gene and Trait 2024, Vol.15, No.2, 62-72 http://genbreedpublisher.com/index.php/pgt 70 Acknowledgments The author extends sincere thanks to two anonymous peer reviewers for their feedback on the manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Augustine S., Narayan J., Syamaladevi D., Appunu C., Chakravarthi M., Ravichandran V., Tuteja N., and Subramonian N., 2015, Introduction of pea DNA helicase 45 into sugarcane (Saccharumspp. Hybrid) enhances cell membrane thermostability and upregulation of stress-responsive genes leads to abiotic stress tolerance, Molecular Biotechnology, 57: 475-488. https://doi.org/10.1007/s12033-015-9841-x PMid:25875731 Barreto F., Rosa J., Balsalobre T., Pastina M., Silva R., Hoffmann H., Souza A., Garcia A., and Carneiro M., 2019, A genome-wide association study identified loci for yield component traits in sugarcane (Saccharumspp.), PLoS One, 14(7): e0219843. https://doi.org/10.1371/journal.pone.0219843 PMid:31318931 PMCid:PMC6638961 Fischer I., Dainat J., Ranwez V., Glémin S., Dufayard J., and Chantret N., 2014, Impact of recurrent gene duplication on adaptation of plant genomes, BMC Plant Biology, 14: 151-151. https://doi.org/10.1186/1471-2229-14-151 PMid:24884640 PMCid:PMC4049390 Kondrashov F., 2012, Gene duplication as a mechanism of genomic adaptation to a changing environment, Proceedings of the Royal Society B: Biological Sciences, 279: 5048-5057. https://doi.org/10.1098/rspb.2012.1108 PMid:22977152 PMCid:PMC3497230 Li P., Chai Z., Lin P., Huang C., Huang G., Xu L., Deng Z., Zhang M., Zhang Y., and Zhao X., 2020, Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneumL.), BMC Genomics, 21: 685. https://doi.org/10.1186/s12864-020-07076-x PMid:33008299 PMCid:PMC7531145 Li X., Si W., Qin Q., Wu H., and Jiang H., 2018, Deciphering evolutionary dynamics of SWEET genes in diverse plant lineages, Scientific Reports, 8: 13440. https://doi.org/10.1038/s41598-018-31589-x PMid:30194417 PMCid:PMC6128921 Mahadevaiah C., Appunu C., Aitken K., Suresha G., Vignesh P., Swamy H., Valarmathi R., Hemaprabha G., Alagarasan G., and Ram B., 2021, Genomic selection in sugarcane: current status and future prospects, Frontiers in Plant Science, 12: 708233. https://doi.org/10.3389/fpls.2021.708233 PMid:34646284 PMCid:PMC8502939 McIntyre C.L., Casu R.E., Drenth J., Knight D., Whan V.A., Croft B.J., Jordan D.R., and Manners J.M., 2005, Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance, Genome, 48(3): 391-400. https://doi.org/10.1139/g05-006 PMid:16121236 Panchy N., Lehti-Shiu M., and Shiu S.H., 2016, Evolution of gene duplication in plants, Plant Physiology, 171(4): 2294-2316. https://doi.org/10.1104/pp.16.00523 PMid:27288366 PMCid:PMC4972278 Rakesh G., Reddy G., Dinesh A., Swapna N., Saicharan M., Naik B., and Kumar M., 2023, Genetic studies in advanced sugarcane mid-late clones through yield and quality traits, International Journal of Environment and Climate Change, 13(10): 4535-4542. https://doi.org/10.9734/ijecc/2023/v13i103132 Ren R., Wang H., Guo C., Zhang N., Zeng L., Chen Y., Ma H., and Qi J., 2018, Widespread whole genome duplications contribute to genome complexity and species diversity in Angiosperms, Molecular Plant, 11(3): 414-428. https://doi.org/10.1016/j.molp.2018.01.002 PMid:29317285 Rensing S., 2014, Gene duplication as a driver of plant morphogenetic evolution, Current Opinion in Plant Biology, 17: 43-48. https://doi.org/10.1016/j.pbi.2013.11.002 PMid:24507493 Rody H., Bombardelli R., Creste S., Camargo L., Sluys M., and Monteiro-Vitorello C., 2019, Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype, BMC Genomics, 20(1): 809.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==