PGT_2024v15n1

Plant Gene and Trait 2024, Vol.15, No.1, 44-51 http://genbreedpublisher.com/index.php/pgt 51 Li Q., Jiang Y., Tong X., Zhao L., and Pei J., 2021, Co-production of xylooligosaccharides and xylose from poplar sawdust by recombinant Endo-1,4-β-Xylanase and β-Xylosidase mixture hydrolysis, Frontiers in Bioengineering and Biotechnology, 8: 637397. https://doi.org/10.3389/fbioe.2020.637397 PMid:33598452 PMCid:PMC7882696 Lyczakowski J., Yu L., Terrett O., Fleischmann C., Temple H., Thorlby G., Sorieul M., and Dupree P., 2021, Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan, The New Phytologist, 231(5): 1720-1733. https://doi.org/10.1111/nph.17531 PMid:34086997 Pawar P., Ratke C., Balasubramanian V., Chong S., Gandla M., Adriasola M., Sparrman T., Hedenström M., Szwaj K., Derba-Maceluch M., Gaertner C., Mouille G., Ezcurra I., Tenkanen M., Jönsson L., and Mellerowicz E., 2017, Downregulation of RWAgenes in hybrid aspen affects xylan acetylation and wood saccharification, The New Phytologist, 214(4): 1491-1505. https://doi.org/10.1111/nph.14489 PMid:28257170 Quan M., Du Q., Xiao L., Lu W., Wang L., Xie J., Song Y., Xu B., and Zhang D., 2018, Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus, Plant Biotechnology Journal, 17(1): 302-315. https://doi.org/10.1111/pbi.12978 PMid:29947466 PMCid:PMC6330548 Ratke C., Pawar P., Balasubramanian V., Naumann M., Duncranz M., Derba-Maceluch M., Gorzsás A., Endo S., Ezcurra I., and Mellerowicz E., 2015, Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification, Plant Biotechnology Journal, 13(1): 26-37. https://doi.org/10.1111/pbi.12232 PMid:25100045 Ratke C., Terebieniec B., Winestrand S., Derba-Maceluch M., Grahn T., Schiffthaler B., Ulvcrona T., Özparpucu M., Rüggeberg M., Lundqvist S., Street N., Jönsson L., and Mellerowicz E., 2018, Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome, The New Phytologist, 219(1): 230-245. https://doi.org/10.1111/nph.15160 PMid:29708593 Sundell D., Street N.R., Kumar M., Mellerowicz E.J., Kucukoglu M., Johnsson K., Kumar V., Mannapperuma C., Delhomme N., Nilsson O., Tuominen H., Pesquet E., Fischer U., Niittylä T., Sundberg B., and Hvidsten T.R., 2017, AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula, Plant Cell, 29(7): 1585-1604. https://doi.org/10.1105/tpc.17.00153 PMid:28655750 PMCid:PMC5559752 Tang X., Zhuang Y., Qi G., Wang D., Liu H., Wang K., Chai G., and Zhou G., 2015, Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation, Scientific Reports, 5: 12240. https://doi.org/10.1038/srep12240 PMid:26179205 PMCid:PMC4503951 Wierzbicki M., Christie N., Pinard D., Mansfield S., Mizrachi E., and Myburg A., 2019, A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood forming tissues, The New Phytologist, 223(4): 1952-1972. https://doi.org/10.1111/nph.15972 PMid:31144333 Yang L., Zhao X., Ran L., Li C., Fan D., and Luo K., 2017, PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar, Scientific Reports, 7: 41209. https://doi.org/10.1038/srep41209 PMid:28117379 PMCid:PMC5259741

RkJQdWJsaXNoZXIy MjQ4ODYzMg==