Molecular Plant Breeding 2025, Vol.16, No.5, 268-277 http://genbreedpublisher.com/index.php/mpb 276 Pallavi M., Prasad M.B.P., Shanthi P., Reddy V.L.N., and Kumar N.A.R., 2024, Multi trait genotype- ideotype distance index (MGIDI) for early seedling vigour and yield related traits to identify elite lines in rice (Oryza sativa L.), Electronic Journal of Plant Breeding, 15: 120-131. https://doi.org/10.37992/2024.1501.020 Raza A., Bashir S., Khare T., Karikari B., Copeland R., Jamla M., Abbas S., Charagh S., Nayak S., Djalović I., Rivero R., Siddique K., and Varshney R., 2024, Temperature-smart plants: a new horizon with omics-driven plant breeding, Physiologia Plantarum, 176: e14188. https://doi.org/10.1111/ppl.14188 Roy N., Kabir A., Zahan N., Mouna S., Chakravarty S., Rahman A., and Bayzid M., 2024, Genome wide association studies on seven yield-related traits of 183 rice varieties in Bangladesh, Plant Direct, 8(6): e593. https://doi.org/10.1002/pld3.593 Sachdeva S., Singh R., Maurya A., Singh V., Singh U., Kumar A., and Singh G., 2024, New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study, BMC Plant Biology, 24: 124. https://doi.org/10.1186/s12870-024-04810-5 Sahoo R., Swain N., Selvaraj S., Nayak G., Sarkar S., Singh N., Parameswaran C., Behera B., and Samantaray S., 2024, Haplotypes differences in growth regulating factor 4 (GRF4) for yield and biomass traits in rice (Oryza sativa L.), Tropical Plant Biology, 18: 7. https://doi.org/10.1007/s12042-024-09370-4 Shang L., Li X., He H., Yuan Q., Song Y., Wei Z., Lin H., Hu M., Zhao F., Zhang C., Li Y., Gao H., Wang T., Liu X., Zhang H., Zhang Y., Cao S., Yu X., Zhang B., Zhang Y., Tan Y., Qin M., Ai C., Yang Y., Zhang B., Hu Z., Wang H., Lv Y., Wang Y., Ma J., Wang Q., Lu H., Wu Z., Liu S., Sun Z., Zhang H., Guo L., Li Z., Zhou Y., Li J., Zhu Z., Xiong G., Ruan J., and Qian Q., 2022, A super pan-genomic landscape of rice, Cell Research, 32: 878-896. https://doi.org/10.1038/s41422-022-00685-z Shipilina D., Pal A., Stankowski S., Chan Y., and Barton N., 2022, On the origin and structure of haplotype blocks, Molecular Ecology, 32(6): 1441-1457. https://doi.org/10.1111/mec.16793 Singh P., Sundaram K., Vinukonda V., Venkateshwarlu C., Paul P., Pahi B., Gurjar A., Singh U., Kalia S., Kumar A., Singh V., and Sinha P., 2024, Superior haplotypes of key drought-responsive genes reveal opportunities for the development of climate-resilient rice varieties, Communications Biology, 7: 89. https://doi.org/10.1038/s42003-024-05769-7 Sinha P., Singh V., Saxena R., Khan A., Abbai R., Chitikineni A., Desai A., Molla J., Upadhyaya H., Kumar A., and Varshney R., 2020, Superior haplotypes for haplotype- based breeding for drought tolerance in pigeonpea (Cajanus cajan L.), Plant Biotechnology Journal, 18: 2482-2490. https://doi.org/10.1111/pbi.13422 Sivabharathi R., Rajagopalan V., Suresh R., Sudha M., Karthikeyan G., Jayakanthan M., and Raveendran M., 2024, Haplotype-based breeding: a new insight in crop improvement, Plant Science, 346: 112129. https://doi.org/10.1016/j.plantsci.2024.112129 Sun K., Zong W., Xiao D., Wu Z., Guo X., Li F., Song Y., Li S., Wei G., Hao Y., Xu B., Li W., Lin Z., Xie W., Liu Y., and Guo J., 2023, Effects of the core heading date genes Hd1, Ghd7, DTH8, and PRR37 on yield-related traits in rice, Theoretical and Applied Genetics, 136: 227. https://doi.org/10.1007/s00122-023-04476-x Udaya V., Sekhar R.M., Laha G.S., Reddy V.L.N., Sudhakar P., and Gireesh C., 2023, Genetic analysis for yield and yield attributing traits in Oryza glaberrima derived introgression line andO. sativa cv. Samba Mahsuri, Journal of Rice Research, 15(2): 41-57. https://doi.org/10.58297/bnwt2744 Wang A., Jiang Y., Shu X., Zha Z., Yin D., Liu Y., Zhang D., Xu D., Jiao C., Jia X., Ye X., Li S., Deng Q., Wang S., Zhu J., Liang Y., Zou T., Liu H., Wang L., Zhu J., Li P., Zhang Z., and Zheng A., 2021, Genome-wide association study-based identification genes influencing agronomic traits in rice (Oryza sativa L.), Genomics, 113(3): 1396-1406. https://doi.org/10.1016/j.ygeno.2021.03.016 Wang N., Chen H., Qian Y., Liang Z., Zheng G., Xiang J., Feng T., Li M., Zeng W., Bao Y., Liu E., Zhang C., Xu J., and Shi Y., 2023, Genome-wide association study of rice grain shape and chalkiness in a worldwide collection of Xian accessions, Plants, 12(3): 419. https://doi.org/10.3390/plants12030419 Wang P., Lehti-Shiu M., Lotreck S., Abá K., and Shiu S., 2024, Prediction of plant complex traits via integration of multi-omics data, Nature Communications, 15: 6856. https://doi.org/10.1038/s41467-024-50701-6 Wang Y., 2024, GWAS reveals progress in genes related to rice yield and quality, Rice Genomics and Genetics, 15(2): 48-57. Wang Y., Pang Y., Chen K., Zhai L., Shen C., Wang S., and Xu J., 2020, Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice, Crop Journal, 8: 119-131. https://doi.org/10.1016/j.cj.2019.05.001 Weber S., Frisch M., Snowdon R., and Voss-Fels K., 2023, Haplotype blocks for genomic prediction: a comparative evaluation in multiple crop datasets, Frontiers in Plant Science, 14: 1217589. https://doi.org/10.3389/fpls.2023.1217589 Wei X., Chen M., Zhang Q., Gong J., Liu J., Yong K., Wang Q., Fan J., Chen S., Hua H., Luo Z., Zhao X., Wang X., Li W., Cong J., Yu X., Wang Z., Huang R., Chen J., Zhou X., Qiu J., Xu P., Murray J., Wang H., Xu Y., Xu C., Xu G., Yang J., Han B., and Huang X., 2024, Genomic investigation of 18 421 lines reveals the genetic architecture of rice, Science, 385(6704): eadm8762. https://doi.org/10.1126/science.adm8762
RkJQdWJsaXNoZXIy MjQ4ODYzNA==