MPB_2025v16n4

Molecular Plant Breeding 2025, Vol.16, No.4, 231-240 http://genbreedpublisher.com/index.php/mpb 239 Manrique S., Friel J., Gramazio P., Hasing T., Ezquer I., and Bombarely A., 2019, Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication, Journal of Experimental Botany, 70(11): 3007-3019. https://doi.org/10.1093/jxb/erz231 Mettakoonpitak J., Chanthabun A., Hatsakhun P., Sirasunthorn N., Siripinyanond A., and Henry C., 2024, Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment, Analytica Chimica Acta, 1329: 343252. https://doi.org/10.1016/j.aca.2024.343252 Nawae W, Naktang C, Charoensri S, U-thoomporn S, Narong N, Chusri O, Tangphatsornruang S., and Pootakham W., 2023, Resequencing of durian genomes reveals large genetic variations among different cultivars, Front. Plant Sci., 14: 1137077. https://doi.org/10.3389/fpls.2023.1137077 Nicolas S., Abad R., Tac-An M., and Bayogan E., 2019, Yield and harvest quality of thinned durian (Durio zibethinus Murray cv. ‘Puyat’), Journal of Science, Engineering and Technology, 7: 9-18. https://doi.org/10.61569/ffv7kt86 Pinsorn P., Hoefgen R., and Sirikantaramas S., 2024, The novel durian (Durio zibethinus L.) homeodomain-leucine zipper (DzHD-ZIP) transcription factor 1.8 regulates the production of volatile sulfur compounds during fruit ripening, Postharvest Biology and Technology, 210: 112776. https://doi.org/10.1016/j.postharvbio.2024.112776 Pinsorn P., Oikawa A., Watanabe M., Sasaki R., Ngamchuachit P., Hoefgen R., Saito K., and Sirikantaramas S., 2018, Metabolic variation in the pulps of two durian cultivars: unraveling the metabolites that contribute to the flavor, Food Chemistry, 268: 118-125. https://doi.org/10.1016/j.foodchem.2018.06.066 Prihatini R., Ihsan F., and Indriyani N., 2016, Genomic profiling of F1 hybrids of durian (Durio zibethinus) revealed by RAPD-PCR, Journal of Horticultural Research, 24: 69-76. https://doi.org/10.1515/johr-2016-0022 Quyen N., Dang L., Ngoc N., Quỳnh L., Phuong N., Ly L., and Hung N., 2025, Reducing uneven fruit ripening and improving the quality of durian (Durio zibethinus Murr.) fruit using plastic mulching combined with polyhalite fertilizer, Agronomy, 15(3): 631. https://doi.org/10.3390/agronomy15030631 Sangpong L., Khaksar G., Pinsorn P., Oikawa A., Sasaki R., Erban A., Watanabe M., Wangpaiboon K., Tohge T., Kopka J., Hoefgen R., Saito K., and Sirikantaramas S., 2021, Assessing dynamic changes of taste-related primary metabolism during ripening of durian pulp using metabolomic and transcriptomic analyses, Frontiers in Plant Science, 12: 687799. https://doi.org/10.3389/fpls.2021.687799 Santoso P., Pancoro A., Suhandono S., and Aryantha I., 2017, Development of simple-sequence repeats markers from durian (Durio zibethinus Murr. cultv. Matahari) genomic library, Agrivita: Journal of Agricultural Science, 39(3): 257-265. http://doi.org/10.17503/agrivita.v39i3.1171 Schilling S., Pan S., Kennedy A., and Melzer R., 2018, MADS-box genes and crop domestication: the jack of all traits, Journal of Experimental Botany, 69: 1447-1469. https://doi.org/10.1093/jxb/erx479 Siew G., Ng W., Tan S., Alitheen N., Tan S., and Yeap S., 2018, Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers, PeerJ, 6: e4266. https://doi.org/10.7717/peerj.4266 Singh A., Chow C., Nathaniel K., Vun Y., Javad S., and Jabeen K., 2024, Management of Phytophthora and Phytopythium oomycete diseases in durian (Durio zibethinus), Crop Protection, 190: 107086. https://doi.org/10.1016/j.cropro.2024.107086 Sundari S., Mas’ud A., Wahyudi D., Arumingtyas E., Hakim L., and Azrianingsih R., 2021, Genetic diversity of local durian from Tidore Island based on morphological and molecular data for tropical fruit conservation in North Maluku, IOP Conference Series: Earth and Environmental Science, 739: 012073. https://doi.org/10.1088/1755-1315/739/1/012073 Suntichaikamolkul N., Sangpong L., Schaller H., and Sirikantaramas S., 2021, Genome-wide identification and expression profiling of durian CYPome related to fruit ripening, PLoS One, 16(11): e0260665. https://doi.org/10.1371/journal.pone.0260665 Teh B., Lim K., Yong C., Ng C., Rao S., Rajasegaran V., Lim W., Ong C., Chan K., Cheng V., Soh P., Swarup S., Rozen S., Nagarajan N., and Tan P., 2017, The draft genome of tropical fruit durian (Durio zibethinus), Nature Genetics, 49: 1633-1641. https://doi.org/10.1038/ng.3972 Vallarino J., Jun H., Wang S., Wang X., Sade N., Orf I., Zhang D., Shi J., Shen S., Cuadros-Inostroza Á., Xu Q., Luo J., Fernie A., and Brotman Y., 2023, Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits, Plant Science, 333: 111748. https://doi.org/10.1016/j.plantsci.2023.111748 Voon Y., Hamid N., Rusul G., Osman A., and Quek S., 2007, Characterisation of Malaysian durian (Durio zibethinus Murr.) cultivars: relationship of physicochemical and flavour properties with sensory properties, Food Chemistry, 103: 1217-1227. https://doi.org/10.1016/j.foodchem.2006.10.038 Wang F., Han T., and Chen J., 2024, Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants, Communications Biology, 7: 579. https://doi.org/10.1038/s42003-024-06275-6

RkJQdWJsaXNoZXIy MjQ4ODYzNA==