Molecular Plant Breeding 2025, Vol.16, No.4, 221-230 http://genbreedpublisher.com/index.php/mpb 229 Hu Z., Yao X., Chen H., Li F., Zhao H., Tang H., Jiao Y., Jiang Y., Tian J., He Y., and Lu L., 2024, Changes and dynamics of the main quality components in tea leaves of 4 tea cultivars during the shading process, Scientia Horticulturae, 333: 113242. https://doi.org/10.1016/j.scienta.2024.113242 Jiang X., Zhao H., Guo F., Shi X., Ye C., Yang P., Liu B., and Ni D., 2020, Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’, BMC Plant Biology, 20: 216. https://doi.org/10.1186/s12870-020-02425-0 Kc S., Long L., Liu M., Zhang Q., and Ruan J., 2021, Light intensity modulates the effect of phosphate limitation on carbohydrates, amino acids, and catechins in tea plants (Camellia sinensis L.), Frontiers in Plant Science, 12: 743781. https://doi.org/10.3389/fpls.2021.743781 Kc S., Long L., Zhang Q., Ni K., Ma L., and Ruan J., 2022, Effect of interactions between phosphorus and light intensity on metabolite compositions in tea cultivar Longjing43, International Journal of Molecular Sciences, 23(23): 15194. https://doi.org/10.3390/ijms232315194 Li Y., Jeyaraj A., Yu H., Wang Y., Ma Q., Chen X., Sun H., Zhang H., Ding Z., and Li X., 2020, Metabolic regulation profiling of carbon and nitrogen in tea plants [Camellia sinensis (L.) O. Kuntze] in response to shading, Journal of Agricultural and Food Chemistry, 68(4): 961-974. https://doi.org/10.1021/acs.jafc.9b05858 Liu L., Li Y., She G., Zhang X., Jordan B., Chen Q., Zhao J., and Wan X., 2018, Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading, BMC Plant Biology, 18: 233. https://doi.org/10.1186/s12870-018-1440-0 Liu S., Mi X., Zhang R., An Y., Zhou Q., Yang T., Xia X., Guo R., Wang X., and Wei C., 2019, Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis), Planta, 250: 1111-1129. https://doi.org/10.1007/s00425-019-03207-1 Liu Y., Chen S., Chen J., Wang J., Wei M., Tian X., Chen L., and Ma J., 2023, Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis), BMC Plant Biology, 23: 206. https://doi.org/10.1186/s12870-023-04221-y Que Y.Y., and Zhao Q., 2024, High-yield tea plant cultivation: ecological and agronomic insights, Journal of Tea Science Research, 14(4): 215-224. https://doi.org/10.5376/jtsr.2024.14.0020 Sano S., Takemoto T., Ogihara A., Suzuki K., Masumura T., Satoh S., Takano K., Mimura Y., and Morita S., 2020, Stress responses of shade-treated tea leaves to high light exposure after removal of shading, Plants, 9(3): 302. https://doi.org/10.3390/plants9030302 Sano T., Horie H., Matsunaga A., and Hirono Y., 2018, Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation, Journal of the Science of Food and Agriculture, 98(15): 5666-5676. https://doi.org/10.1002/jsfa.9112 Shao C., Deng Z., Liu J., Li Y., Zhang C., Yao S., Zuo H., Shi Y., Yuan S., Qin L., Liu Z., and Shen C., 2022, Effects of preharvest shading on dynamic changes in metabolites, gene expression, and enzyme activity of three tea types during processing, Journal of Agricultural and Food Chemistry, 70(45): 14544-14558. https://doi.org/10.1021/acs.jafc.2c05456 Shen J., Wang S., Sun L., Wang Y., Fan K., Li C., Wang H., Bi C., Zhang F., and Ding Z., 2022, Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering, Frontiers in Plant Science, 13: 978531. https://doi.org/10.3389/fpls.2022.978531 Shi Y., Lu X., Song Q., Sun H., Shen W., Huang R., Huang J., Wei Y., Xiang F., Wang X., Tuo Y., Lin J., and Hu Y., 2025, Mechanism of endogenous hormones regulating gallic acid biosynthesis during the development of buds and leaves in tea plant (Camellia sinensis), Frontiers in Plant Science, 16: 1553266. https://doi.org/10.3389/fpls.2025.1553266 Shu Z., Ji Q., He T., Zhou D., Zheng S., Zhou H., and He W., 2024, Combined metabolome and transcriptome analyses reveal that growing under Red shade affects secondary metabolite content in Huangjinya green tea, Frontiers in Genetics, 15: 1365243. https://doi.org/10.3389/fgene.2024.1365243 Sun M., Yuan D., Hu X., Zhang D., and Li Y., 2020, Effects of mycorrhizal fungi on plant growth, nutrient absorption and phytohormones levels in tea under shading condition, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2006-2020. https://doi.org/10.15835/nbha48412082 Tang J., Chen Y., Huang C., Li C., Feng Y., Wang H., Ding C., Li N., Wang L., Zeng J., Yang Y., Hao X., and Wang X., 2023, Uncovering the complex regulatory network of spring bud sprouting in tea plants: insights from metabolic, hormonal, and oxidative stress pathways, Frontiers in Plant Science, 14: 1263606. https://doi.org/10.3389/fpls.2023.1263606 Teng R., Wang Y., Li H., Lin S., Liu H., and Jing Z., 2020, Effects of shading on lignin biosynthesis in the leaf of tea plant (Camellia sinensis (L.) O. Kuntze), Molecular Genetics and Genomics, 296: 165-177. https://doi.org/10.1007/s00438-020-01737-y Tong W., Yu J., Hou Y., Li F., Zhou Q., Wei C., and Bennetzen J., 2018, Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis), Planta, 248: 1417-1429. https://doi.org/10.1007/s00425-018-2983-x
RkJQdWJsaXNoZXIy MjQ4ODYzNA==