MPB_2025v16n4

Molecular Plant Breeding 2025, Vol.16, No.4, 211-220 http://genbreedpublisher.com/index.php/mpb 219 Doll N., Depège-Fargeix N., Rogowsky P., and Widiez T., 2017, Signaling in early maize kernel development, Molecular Plant, 10(3): 375-388. https://doi.org/10.1016/j.molp.2017.01.008 Du K., Zhao W., Lv Z., Liu L., Ali S., Chen B., Hu W., Zhou Z., and Wang Y., 2023, Auxin and abscisic acid play important roles in promoting glucose metabolism of reactivated young kernels of maize (Zea mays L.), Physiologia Plantarum, 175(5): e14019. https://doi.org/10.1111/ppl.14019 Duan F., Wei Z., Soualiou S., and Zhou W., 2023, Nitrogen partitioning in maize organs and underlined mechanisms from different plant density levels and N application rate in China, Field Crops Research, 294: 108874. https://doi.org/10.1016/j.fcr.2023.108874 Ghețe A.B., Haș V., Copândean A., Vidican R., Suciu L., Vârban D.I., Muntean S., Biro-Janka B., and Duda M.M., 2021, Influence of plant densities on seed production in some parental inbred lines of Turda maize hybrids, Romanian Agricultural Research, 38: 163-171. https://doi.org/10.59665/rar3818 Guo J., Gu X., Lu W., and Lu D., 2021, Multi-omics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize, Journal of Experimental Botany, 72(18): 6291-6304. https://doi.org/10.1093/jxb/erab286 He J., Wang J., and Zhang Z., 2024, Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel, The Plant Journal, 118(6): 2124-2140. https://doi.org/10.1111/tpj.16733 Ishka M., 2022, Terminator: maize KIL1 terminates fertility by inducing silk senescence, The Plant Cell, 34(8): 2815-2816. https://doi.org/10.1093/plcell/koac152 Kuo B., Jhong Y., Yiu T., Su Y., and Lin W., 2021, Bootstrap simulations for evaluating the model estimation of the extent of cross-pollination in maize at the field-scale level, PLoS One, 16(5): e0249700. https://doi.org/10.1371/journal.pone.0249700 Li W., Liu W., Huang Y., Xiao W., Xu L., Pan K., Fu G., Chen X., and Li C., 2024, Modeling the effects of sowing dates on maize in different environments in the tropical area of southwest China using DSSAT, Agronomy, 14(12): 2819. https://doi.org/10.3390/agronomy14122819 Liu J., He Q., Wu Y., Xiao X., Sun W., Lin Y., Yi R., and Pan X., 2023, The effect of sowing date on the nutritional quality of kernels of various maize varieties in northeast China, Agronomy, 13(10): 2543. https://doi.org/10.3390/agronomy13102543 Niu S., Du X., Wei D., Liu S., Tang Q., Bian D., Zhang Y., Cui Y., and Gao Z., 2021, Heat stress after pollination reduces kernel number in maize by insufficient assimilates, Frontiers in Genetics, 12: 728166. https://doi.org/10.3389/fgene.2021.728166 Omar M., Rabie H., Mowafi S., Othman H., El-Moneim D., Alharbi K., Mansour E., and Ali M., 2022, Multivariate analysis of agronomic traits in newly developed maize hybrids grown under different agro-environments, Plants, 11(9): 1187. https://doi.org/10.3390/plants11091187 Parco M., D’Andrea K., and Maddonni G., 2022, Maize prolificacy under contrasting plant densities and N supplies: I. plant growth, biomass allocation and development of apical and sub-apical ears from floral induction to silking, Field Crops Research, 284: 108553. https://doi.org/10.1016/j.fcr.2022.108553 Ren H., Qi H., Zhao M., Zhou W., Wang X., Gong X., Jiang Y., and Li C., 2022, Characterization of source-sink traits and carbon translocation in maize hybrids under high plant density, Agronomy, 12(4): 961. https://doi.org/10.3390/agronomy12040961 Ross F., Matteo J., and Cerrudo A., 2020, Maize prolificacy: a source of reproductive plasticity that contributes to yield stability when plant population varies in drought-prone environments, Field Crops Research, 247: 107699. https://doi.org/10.1016/j.fcr.2019.107699 Rotili D., Abeledo L., Larrea S., and Maddonni G., 2022, Grain yield and kernel setting of multiple-shoot and/or multiple-ear maize hybrids, Field Crops Research, 279: 108471. https://doi.org/10.1016/j.fcr.2022.108471 Shao H., Wu X., Chi H., Zhu F., Liu J., Duan J., Shi W., Xu Y., and Mi G., 2024a, How does increasing planting density affect nitrogen use efficiency of maize: a global meta-analysis, Field Crops Research, 311: 109369. https://doi.org/10.1016/j.fcr.2024.109369 Shao H., Wu X., Duan J., Zhu F., Chi H., Liu J., Shi W., Xu Y., Wei Z., and Mi G., 2024b, How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: a global meta-analysis, Field Crops Research, 315: 109430. https://doi.org/10.1016/j.fcr.2024.109430 Shen S., Li B., Deng T., Xiao Z., Chen X., Hu H., Zhang B., Wu G., Li F., Zhao X., Liang X., Mi G., and Zhou S., 2020, The equilibrium between sugars and ethylene is involved in shading- and drought-induced kernel abortion in maize, Plant Growth Regulation, 91: 101-111. https://doi.org/10.1007/s10725-020-00590-8 Shen S., Liang X., Zhang L., Zhao X., Liu Y., Lin S., Gao Z., Wang P., Wang Z., and Zhou S., 2019, Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize, Plant, Cell and Environment, 43(4): 903-919. https://doi.org/10.1111/pce.13704

RkJQdWJsaXNoZXIy MjQ4ODYzNA==