MPB2025v16n3

Molecular Plant Breeding 2025, Vol.16, No.3, 191-201 http://genbreedpublisher.com/index.php/mpb 200 Ikwan W., and Fikkri M., 2020, Quality of ripe tree-dropped “Musang King” durian as affected by low oxygen storage, International Journal of Agriculture, Forestry and Plantation, 10: 274-281. Imsabai W., Ketsa S., and Doorn W., 2002, Effect of temperature on softening and the activities of polygalacturonase and pectinesterase in durian fruit, Postharvest Biology and Technology, 26: 347-351. https://doi.org/10.1016/S0925-5214(02)00067-4 Khaksar G., Kasemcholathan S., and Sirikantaramas S., 2024, Durian (Durio zibethinus L.): nutritional composition, pharmacological implications, value-added products, and omics-based investigations, Horticulturae, 10(4): 342. https://doi.org/10.3390/horticulturae10040342 Khaksar G., Sangchay W., Pinsorn P., Sangpong L., and Sirikantaramas S., 2019, Genome-wide analysis of the Dof gene family in durian reveals fruit ripening-associated and cultivar-dependent Dof transcription factors, Scientific Reports, 9: 12109. https://doi.org/10.1038/s41598-019-48601-7 Khaksar G., and Sirikantaramas S., 2020, Auxin response factor 2A is part of the regulatory network mediating fruit ripening through auxin-ethylene crosstalk in durian, Frontiers in Plant Science, 11: 543747. https://doi.org/10.3389/fpls.2020.543747 López-Casado G., S nchez-Raya C., Ric-Varas P., Paniagua C., Blanco-Portales R., Mu㈱oz-Blanco J., Pos S., Matas A., and Mercado J., 2023, CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness, Horticulture Research, 10(3): uhad011. https://doi.org/10.1093/hr/uhad011 Lobato-Gómez M., Hewitt S., Capell T., Christou P., Dhingra A., and Girón-Calva P.S., 2021, Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities, Horticulture Research, 8: 166. https://doi.org/10.1038/s41438-021-00601-3 Meitha K., Pramesti Y., and Suhandono S., 2020, Reactive oxygen species and antioxidants in postharvest vegetables and fruits, Int. J. Food Sci., 2020: 8817778. https://doi.org/10.1155/2020/8817778 Miao H., Zhang J., Zheng Y., Jia C., Hu Y., Wang J., Zhang J., Sun P., Jin Z., Zhou Y., Zheng S., Wang W., Rouard M., Xie J., and Liu J., 2025, Shaping the future of bananas: advancing genetic trait regulation and breeding in the post-genomics era. Horticulture Research, 12(5): uhaf044. https://doi.org/10.1093/hr/uhaf044 Osorio S., Scossa F., and Fernie A., 2013, Molecular regulation of fruit ripening, Frontiers in Plant Science, 4: 198. https://doi.org/10.3389/fpls.2013.00198 Palapol Y., Kunyamee S., Thongkhum M., Ketsa S., Ferguson I., and van Doorn W., 2015, Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit, Journal of Plant Physiology, 182: 33-39. https://doi.org/10.1016/j.jplph.2015.04.005 Pan H., Sun Y., Qiao M., Zhou X., and Li H., 2022, Beta-galactosidase gene family genome-wide identification and expression analysis of members related to fruit softening in melon (Cucumis melo L.), BMC Genomics, 23: 795. https://doi.org/10.1186/s12864-022-09006-5 Peng Z., Liu G., Li H., Wang Y., Gao H., Jemrić T., and Fu D., 2022, Molecular and genetic events determining the softening of fleshy fruits: a comprehensive review, International Journal of Molecular Sciences, 23(20): 12482. https://doi.org/10.3390/ijms232012482 Prado G.S., Rocha D.C., Santos L.N.D., Contiliani D.F., Nobile P.M., Martinati-Schenk J.C., Padilha L., Maluf M.P., Lubini G., Pereira T.C., Monteiro-Vitorello C.B., Creste S., Boscariol-Camargo R.L., Takita M.A., Cristofani-Yaly M., and Souza A.A.D., 2024, CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane, Frontiers in Plant Science, 14: 1331258. https://doi.org/10.3389/fpls.2023.1331258 Shipman E., Yu J., Zhou J., Albornoz K., and Beckles D., 2021, Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals, Horticulture Research, 8: 1. https://doi.org/10.1038/s41438-020-00428-4 Suntichaikamolkul N., Sangpong L., Schaller H., and Sirikantaramas S., 2021, Genome-wide identification and expression profiling of durian CYPome related to fruit ripening, PLoS One, 16(11): e0260665. https://doi.org/10.1371/journal.pone.0260665 Tariq S., Gul A., Negri S., and Mujtaba T., 2024, Genetic engineering in tomato, In: Gul A. (eds.), Targeted genome engineering via CRISPR/Cas9 in plants, Academic Press, New York, USA, pp.101-133. https://doi.org/10.1016/B978-0-443-26614-0.00015-1 Teh B., Lim K., Yong C., Ng C., Rao S., Rajasegaran V., Lim W., Ong C., Chan K., Cheng V., Soh P., Swarup S., Rozen S., Nagarajan N., and Tan P., 2017, The draft genome of tropical fruit durian (Durio zibethinus), Nature Genetics, 49: 1633-1641. https://doi.org/10.1038/ng.3972 Uluisik S., Chapman N., Smith R., Poole M., Adams G., Gillis R., Besong T., Sheldon J., Stiegelmeyer S., Perez L., Samsulrizal N., Wang D., Fisk I., Yang N., Baxter C., Rickett D., Fray R., Blanco-Ulate B., Powell A., Harding S., Craigon J., Rose J., Fich E., Sun L., Domozych D., Fraser P., Tucker G., Grierson D., and Seymour G., 2016, Genetic improvement of tomato by targeted control of fruit softening, Nature Biotechnology, 34: 950-952. https://doi.org/10.1038/nbt.3602

RkJQdWJsaXNoZXIy MjQ4ODYzNA==