MPB2025v16n3

Molecular Plant Breeding 2025, Vol.16, No.3, 165-179 http://genbreedpublisher.com/index.php/mpb 178 Selamat N., and Nadarajah K.K., 2021, Meta-analysis of quantitative traits loci (QTL) Identified in drought response in rice (Oryza sativa L.), Plants, 10(4): 716. https://doi.org/10.3390/plants10040716 Seo J., Joo J., Kim M., Kim Y., Nahm B.H., Song S.I., Cheong J., Lee J.S., Kim J., and Choi Y.D., 2011, OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice, The Plant Journal, 65(6): 907-921. https://doi.org/10.1111/j.1365-313X.2010.04477.x Serraj R., McNally K.L., Slamet-Loedin I., Kohli A., Haefele S.M., Atlin G., and Kumar A., 2011, Drought resistance improvement in rice: an integrated genetic and resource management strategy, Plant Production Science, 14(1): 1-14. https://doi.org/10.1626/pps.14.1 Shinozaki K., and Yamaguchi-Shinozaki K., 2006, Gene networks involved in drought stress response and tolerance, Journal of Experimental Botany, 58(2): 221-227. https://doi.org/10.1093/jxb/erl164 Sircar S., and Parekh N., 2019, Meta-analysis of drought-tolerant genotypes in Oryza sativa: a network-based approach, PLoS One, 14(5): e0216068. https://doi.org/10.1371/journal.pone.0216068 Soltanpour S., Tarinejad A., Hasanpur K., and Majidi M., 2022, A meta-analysis of microarray data revealed hub genes and transcription factors involved in drought stress response in rice (Oryza sativa L.), Functional Plant Biology, 49(10): 898-916. https://doi.org/10.1071/FP22028 Sun X., Xiong H., Jiang C., Zhang D., Yang Z., Huang Y., Zhu W., Ma S., Duan J., Wang X., Liu W., Guo H., Li G., Qi J., Liang C., Zhang Z., Li J., Zhang H., Han L., Zhou Y., Peng Y., and Li Z., 2022, Natural variation of DROT1 confers drought adaptation in upland rice, Nation Communication, 13: 4265. https://doi.org/10.1038/s41467-022-31844-w Swamy B.P.M., and Kumar A., 2013, Genomics-based precision breeding approaches to improve drought tolerance in rice, Biotechnology Advances, 31(8): 1308-1318. https://doi.org/10.1016/j.biotechadv.2013.05.004 Tang N., Zhang H., Li X., Xiao J., and Xiong L., 2012, Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice, Plant Physiology, 158(4): 1755-1768. https://doi.org/10.1104/pp.111.190389 Uga Y., Sugimoto K., Ogawa S., Rane J., Ishitani M., Hara N., Kitomi Y., Inukai Y., Ono K., Kanno N., Inoue H., Takehisa H., Motoyama R., Nagamura Y., Wu J., Matsumoto T., Takai T., Okuno K., and Yano M., 2013, Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions, Nature Genetics, 45: 1097-1102. https://doi.org/10.1038/ng.2725 Wang B., Wang Y., Yu W., Wang L., Lan Q., Wang Y., Chen C., and Zhang Y., 2022, Knocking out the transcription factor OsNAC092 promoted rice drought tolerance, Biology, 11(12): 1830. https://doi.org/10.3390/biology11121830 Wang D., Pan Y., Zhao X., Zhu L., Fu B., and Li Z., 2011, Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice, BMC Genomics, 12: 149. https://doi.org/10.1186/1471-2164-12-149 Wang Y., Jiang C., Zhang X., Yan H., Yin Z., Sun X., Gao F., Zhao Y., Liu W., Han S., Zhang J., Zhang Y., Zhang Y., Zhang H., Li J., Xie X., Zhao Q., Wang X., Ye G., Li J., Ming R., and Li Z., 2024, Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding, Plant Biotechnology Journal, 22(3): 662-677. https://doi.org/10.1111/pbi.14215 Wu D., Guo Z., Ye J., Feng H., Liu J., Chen G., Zheng J., Yan D., Yang X., Xiong X., Liu Q., Niu Z., Gay A.P., Doonan J.H., Xiong L., and Yang W., 2019, Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice, Journal of Experimental Botany, 70: 545-561. https://doi.org/10.1093/jxb/ery373 Yang A., Dai X., and Zhang W.H., 2012, A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice, Journal of Experimental Botany, 63(7): 2541-2556. https://doi.org/10.1093/jxb/err431 Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., and Yamaguchi-Shinozaki K., 2010, AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation, The Plant Journal, 61(4): 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x Yu B., Liu J., Wu D., Liu Y., Cen W., Wang S., Li R., and Luo J., 2020, Weighted gene coexpression network analysis-based identification of key modules and hub genes associated with drought sensitivity in rice, BMC Plant Biology, 20: 478. https://doi.org/10.1186/s12870-020-02705-9 Zhang A., Liu Y., Wang F., Kong D., Bi J., Zhang F., Luo X., Wang J., Liu G., Luo L., and Yu X., 2022, Molecular breeding of water-saving and drought-resistant rice for blast and bacterial blight resistance, Plants, 11(19): 2641. https://doi.org/10.3390/plants11192641

RkJQdWJsaXNoZXIy MjQ4ODYzNA==