Molecular Plant Breeding 2025, Vol.16, No.3, 165-179 http://genbreedpublisher.com/index.php/mpb 177 Li X., Guo Z., Lv Y., Cen X., Ding X., Wu H., Li X., Huang J., and Xiong L., 2017, Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study, PLoS Genetics, 13(7): e1006889. https://doi.org/10.1371/journal.pgen.1006889 Liu G., Zhu P., Liu Y., Kong D., Wang J., Luo L., and Yu X., 2024, Drought-resistant rice (WDR) restoration line, Hanhui 8200, for enhanced resistance to rice blast, Agronomy, 14(7): 1504. https://doi.org/10.3390/agronomy14071504 Liu T., Li S., Du H., Cui J., Xu S., Wang J., Liu H., Zou D., Lu W., and Zheng H., 2024, The identification of drought tolerance candidate genes in Oryza sativa L. ssp. Japonicaseedlings through genome-wide association study and linkage mapping, Agriculture, 14(4): 603. https://doi.org/10.3390/agriculture14040603 Lou D., Lu S., Chen Z., and Lin Y., 2023, Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice, BMC Plant Biology, 23: 53. https://doi.org/10.1186/s12870-023-04071-8 Luo G., Li L., Yang X., Yu Y., Gao L., Mo B., Chen X., and Liu L., 2024, MicroRNA1432 regulates rice drought stress tolerance by targeting the CALMODULIN-LIKE2 gene, Plant Physiology, 195(3): 1954-1968. https://doi.org/10.1093/plphys/kiae127 Mittler R., 2002, Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, 7(9): 405-410. https://doi.org/10.1016/s1360-1385(02)02312-9 Mohanavel V., Muthu V., Kambale R., Palaniswamy R., Seeli P., Ayyenar B., Rajagopalan V., Manickam S., Rajasekaran R., Rahman H., Nallathambi J., Swaminathan M., Chellappan G., Vellingiri G., and Muthurajan R., 2024, Marker-assisted breeding accelerates the development of multiple-stress-tolerant rice genotypes adapted to wider environments, Frontiers in Plant Science, 15: 1402368. https://doi.org/10.3389/fpls.2024.1402368 Nakashima K., Tran L.P., Van Nguyen D., Fujita M., Maruyama K., Todaka D., Ito Y., Hayashi N., Shinozaki K., and Yamaguchi-Shinozaki K., 2007, Functional analysis of a NAC- type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice, The Plant Journal, 51(4): 617-630. https://doi.org/10.1111/j.1365-313X.2007.03168.x Nayyar H., and Gupta D., 2006, Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants, Environmental and Experimental Botany, 58: 106-113. https://doi.org/10.1016/j.envexpbot.2005.06.021 Nelson D.E., Repetti P.P., Adams T.R., Creelman R.A., Wu J., Warner D.C., Anstrom D.C., Bensen R.J., Castiglioni P.P., Donnarummo M.G., Hinchey B.S., Kumimoto R.W., Maszle D.R., Canales R.D., Krolikowski K.A., Dotson S.B., Gutterson N., Ratcliffe O.J., and Heard J.E., 2007, Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres, Proceedings of the National Academy of Sciences, 104(42): 16450-16455. https://doi.org/10.1073/pnas.0707193104 Nyasulu M., Zhong Q., Li X., Liu X., Wang Z., Chen L., He H., and Bian J., 2024, Uncovering novel genes for drought stress in rice at germination stage using genome wide association study, Frontiers in Plant Science, 15: 1421267. https://doi.org/10.3389/fpls.2024.1421267 Oladosu Y., Rafii M.Y., Samuel C., Fatai A., Magaji U., Kareem I., Kamarudin Z.S., Muhammad I., and Kolapo K., 2019, Drought resistance in rice from conventional to molecular breeding: a review, International Journal of Molecular Sciences, 20(14): 3519. https://doi.org/10.3390/ijms20143519 Panda D., Mishra S.S., and Behera P.K., 2021, Drought tolerance in rice: focus on recent mechanisms and approaches, Rice Science, 28(2): 119-132. https://doi.org/10.1016/j.rsci.2021.01.002 Pant B.D., Lee S., Lee H.K., Krom N., Pant P., Jang Y., and Mysore K.S., 2022, Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice, Plant Physiology, 189(2): 988-1004. https://doi.org/10.1093/plphys/kiac078 Patnaik G.P., Thavaprakaash N., and Monisha V., 2021, Impact of moisture stress on rice and its mitigation strategies, Food Sci. Rep., 2: 21-23. Price A., and Courtois B., 1999, Mapping QTLs associated with drought resistance in rice: progress, problems and prospects, Plant Growth Regulation, 29: 123-133. https://doi.org/10.1023/A:1006255832479 Price A.H., Cairns J.E., Horton P., Jones H.G., and Griffiths H., 2002, Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses, Journal of Experimental Botany, 53(371): 989-1004. https://doi.org/10.1093/jexbot/53.371.989 Sahebi M., Hanafi M.M., Rafii M.Y., Mahmud T.M.M., Azizi P., Osman M., Abiri R., Taheri S., Kalhori N., Shabanimofrad M., Miah G., and Atabaki N., 2018, Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family, BioMed Research International, 2018: 3158474. https://doi.org/10.1155/2018/3158474 Sandhu N., and Kumar A., 2017, Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs, Agronomy, 7(2): 27. https://doi.org/10.3390/agronomy7020027
RkJQdWJsaXNoZXIy MjQ4ODYzNA==