Molecular Plant Breeding 2025, Vol.16, No.3, 165-179 http://genbreedpublisher.com/index.php/mpb 176 Das G., and Rao G.J.N., 2015, Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar, Frontiers in Plant Science, 6: 698. https://doi.org/10.3389/fpls.2015.00698 Das G., Patra J.K., and Baek K.H., 2017, Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking, Frontiers in Plant Science, 8: 985. https://doi.org/10.3389/fpls.2017.00985 Du H., Liu L., You L., Yang M., He Y., Li X., and Xiong L., 2011, Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice, Plant Molecular Biology, 77: 547-563. https://doi.org/10.1007/S11103-011-9830-9 Farooq M., Wahid A., Lee D.J., Ito O., and Siddique K.H.M., 2009, Advances in drought resistance of rice, Critical Reviews in Plant Sciences, 28(4): 199-217. https://doi.org/10.1080/07352680902952173 Flexas J., Bota J., Galmés J., Medrano H., and Ribas-Carbó M., 2006, Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress, Physiologia Plantarum, 127(3): 343-352. https://doi.org/10.1111/j.1399-3054.2006.00621.x Fu J., Wu H., Ma S., Xiang D., Liu R., and Xiong L., 2017, OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice, Frontiers in Plant Science, 8: 2108. https://doi.org/10.3389/fpls.2017.02108 Guo Z., Yang W., Chang Y., Ma X., Tu H., Xiong F., Jiang N., Feng H., Huang C., Yang P., Zhao H., Chen G., Liu H., Luo L., Hu H., Liu Q., and Xiong L., 2018, Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice, Molecular Plant, 11(6): 789-805. https://doi.org/10.1016/j.molp.2018.03.018 Gupta C., Ramegowda V., Basu S., and Pereira A., 2021, Using network-based machine learning to predict transcription factors involved in drought resistance, Frontiers in Genetics, 12: 652189. https://doi.org/10.3389/fgene.2021.652189 Hadiarto T., and Tran L.S.P., 2011, Progress studies of drought-responsive genes in rice, Plant Cell Reports, 30(3): 297-310. https://doi.org/10.1007/s00299-010-0956-z Henry A., Gowda V.R.P., Torres R.O., McNally K.L., and Serraj R., 2011, Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields, Field Crops Research, 120(2): 205-214. https://doi.org/10.1016/j.fcr.2010.10.003 Hoang G.T., Van Dinh L., Nguyen T.T., Ta N.K., Gathignol F., Mai C.D., Jouannic S., Tran K.D., Khuat T.H., Do V.N., Lebrun M., Courtois B., and Gantet P., 2019, Genome-wide association study of a panel of Vietnamese rice landraces reveals new QTLs for tolerance to water deficit during the vegetative phase, Rice, 12: 4. https://doi.org/10.1186/s12284-018-0258-6 Hong Y., Zhang H., Huang L., Li D., and Song F., 2016, Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice, Frontiers in Plant Science, 7: 4. https://doi.org/10.3389/fpls.2016.00004 Hu H., and Xiong L., 2014, Genetic engineering and breeding of drought-resistant crops, Annual Review of Plant Biology, 65: 715-741. https://doi.org/10.1146/annurev-arplant-050213-040000 Huang X.Y., Chao D.Y., Gao J.P., Zhu M.Z., Shi M., and Lin H.X., 2009, A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control, Genes and Development, 23: 1805-1817. https://doi.org/10.1101/GAD.1812409 Islam M.M., Ahmed S., Urmi T.A., Raihan M.S., and Islam M.R., 2021, Evaluation of moisture regime on agronomic traits of rice genotypes, Annals of Bangladesh Agriculture, 25: 89-104. https://doi.org/10.3329/aba.v25i1.58158 Jena K.K., and Mackill D.J., 2008, Molecular markers and their use in marker-assisted selection in rice, Crop Science, 48(4): 1266-1276. https://doi.org/10.2135/cropsci2008.02.0082 Lafitte H., Guan Y., Yan S., and Li Z.K., 2006, Whole plant responses, key processes, and adaptation to drought stress: the case of rice, Journal of Experimental Botany, 58(2): 169-175. https://doi.org/10.1093/jxb/erl101 Lata C., and Prasad M., 2011, Role of DREBs in regulation of abiotic stress responses in plants, Journal of Experimental Botany, 62(14): 4731-4748. https://doi.org/10.1093/jxb/err210 Lee D.K., Jung H., Jang G., Jeong J.S., Kim Y.S., Ha S.H., Do Choi Y., and Kim J.K., 2016, Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance, Plant Physiology, 172: 575-588. https://doi.org/10.1104/pp.16.00379 Lee D.K., Kim H.I., Jang G., Chung P.J., Jeong J.S., Kim Y.S., Bang S.W., Jung H., Choi Y.D., and Kim J.K., 2015, The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner, Plant Science, 241: 199-210. https://doi.org/10.1016/j.plantsci.2015.10.006 Lenka S.K., Katiyar A., Chinnusamy V., and Bansal K.C., 2011, Comparative analysis of drought responsive transcriptome in Indica rice genotypes with contrasting drought tolerance, Plant Biotechnology Journal, 9(3): 315-327. https://doi.org/10.1111/j.1467-7652.2010.00560.x
RkJQdWJsaXNoZXIy MjQ4ODYzNA==